

An Empirical Study of
Open Source Software
Architectures’ Effect on

Product Quality

Klaus Marius Hansen, Kristján Jónasson,
Helmut Neukirchen

July 21, 2009

Report nr. VHI-01-2009, Reykjavík 2009

Klaus Marius Hansen, Kristján Jónasson, Helmut Neukirchen. An Empirical Study of Open Source
Software Architectures’ Effect on Product Quality,
Engineering Research Institute, University of Iceland, Technical report VHI-01-2009, July 2009

The results or opinions presented in this report are the responsibility of the author. They should not
be interpreted as representing the position of the Engineering Research Institute or the University of
Iceland.

c© Engineering Research Institute, University of Iceland, and the author(s)

Engineering Research Institute, University of Iceland, Hjarðarhagi 2-6, IS-107 Reykjavík, Iceland

Abstract

Software architecture is concerned with the structure of software systems and is generally
agreed to influence software quality. Even so, little empirical research has been performed
on the relationship between software architecture and software quality. Based on 1,141
open source Java projects, we analyze to which extent software architecture metrics has
an effect on software product metrics and conclude that there are a number of significant
relationships. In particular, the number of open defects depend significantly on all our
architecture measures. Furthermore, we introduce and analyze a new architecture metric
that measures the density of the package dependency graph. Future research is needed
to make predictions on a per-project basis, but the effects found may be relied on to draw
conclusions about expected software quality given a set of projects.

Contents

1 Introduction . 1
2 Metrics . 3
2.1 Product Metrics . 3
2.2 Software Architecture Metrics . 4

2.2.1 Architecture Metrics from Architecture-Related Conferences 5
2.2.2 Architecture Metrics Based on Martin 6
2.2.3 Further Architecture Metrics . 7

2.3 Choice of Metrics . 8
3 Materials and Methods . 10
3.1 Data Gathering . 10

3.1.1 Meta-data Gathering . 10
3.1.2 Filtering Based on Meta-data . 11
3.1.3 Source Code Gathering . 12
3.1.4 Classification Filtering . 13

3.2 Metrics Calculation . 13
4 Results . 14
4.1 Modeling of Coupling . 14
4.2 Pairwise Regression Models . 14
4.3 Multiple Regression Models . 16
4.4 Limitations . 17
5 Discussion . 19
A Appendix . 20
A.1 List of All Relevant Projects . 20
A.2 List of Mature Projects . 22

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

1 Introduction

It is often claimed that software architecture enables (or inhibits) software quality. An exam-
ple would be that an architectural choice of a specific, relational database for an application
implies quality constraints on performance, modifiability etc. However, this claim has not
been extensively validated empirically. While much work has focused on measuring soft-
ware quality, little has focused on measuring software architecture. In the work reported
here, we investigated the software architecture of open source software projects, defined
metrics for software architecture, and analyzed to which extent they correlated with soft-
ware quality metrics. Specifically, the data that we collected was meta-data on 21,904 projects
and source code from 1,570 of these. All projects are Java projects. Based on the meta-data
and source code, we computed and analyzed the results of various metrics.

Our view on software quality originates in the work of [27]. Garvin defined a set of views
on quality which are also applicable to software [38]. The characteristics of quality in these
views are:

• In the transcendental view, quality can be recognized but not defined. This is the view
that is espoused by Christopher Alexander in his patterns work [6] and to a certain
extent in the software patterns literature [26]

• In the user view, a system has high quality if it fulfills the needs of its users. This view
is highly related to usability and is in line with “quality in use” as defined in the ISO
9126 standard [33]

• In the manufacturing view, a product is seen as being of high quality if its development
conforms to specifications and defined processes. This view is to a certain extent part
of CMM(I) [47] or SPICE [34] and to the “process quality” concept briefly mentioned
in ISO 9126. In the sense of conformance to specifications, aspects of “external” quality
related to faults is also related to this view

• The value-based view equates quality to the amount a customer is willing to pay for a
product

• In the product view, quality is tied to properties of the product being developed. This
is the primary view of “internal” and “external” quality in ISO 9126

<<influences>>

Process Quality Internal Quality

<<depends on>>

<<influences>>

External Quality

<<depends on>>

<<influences>>

Quality in Use

<<depends on>>
<<measures>>

Process
Measures

<<measures>>

Internal
Measures

<<measures>>

External
Measures

<<measures>>

Quality in Use
Measures

Process Product Effect

Figure 1.1: ISO 9126 quality views. (Adapted from [33])

Turning to software architecture, there are many definitions of software architecture. An
influential and representative definition by Bass et al. [10] states that:

1 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

The software architecture of a computing system is the structures of the system,
which comprise software elements, the externally visible properties of those
elements, and the relationships among them

In other words, software architecture is concerned with structures (which can, e.g., be
development or runtime structures) and abstracts away the internals of elements of structures
by only considering externally visible properties.

Recently, focus has also been on decisions made when defining system structures. This
leads to definitions such as:

A software system’s architecture is the set of principal design decisions made
about the system [46].

We are here concerned with a large set of open source projects and thus necessarily have to
rely on (semi-)automated analyzes. Thus we take the definition of Bass et al. as our basis
for a definition of software architecture.

Report Structure

The rest of this report is structured as follows: Chapter 2 presents and discusses metrics on
software quality and on software architecture. Next, Chapter 3 presents our study method
including how data was gathered and metrics calculated. Our analysis is presented in
Chapter 4 and Chapter 5 discusses our results, future work, and concludes.

2 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

2 Metrics

We divide the metrics that we consider into “product metrics” which are metrics related
to software quality that are not architectural in nature and “architecture metrics” which
are architectural in nature. Section 2.1 presents and discusses product metrics, Section 2.2
presents and discusses architecture metrics, while Section 2.3 presents our choice of metrics
for this work.

2.1 Product Metrics

Metrics for software quality has been widely practiced and researched [36]. We are concerned
with metrics that can measure quality from any of the five views described in Section 1. With
our data, we can measure quality (to some extent) from three of the views.

Metrics Related to the Manufacturing View

Here we can use defect count as a direct measure of quality to extent that defects are
introduced during manufacturing:

Definition 1 (Open Defect Ratio (ODR)) The Open Defect Ratio (ODR) for a project p is given
by:

ODR(p) =
NumOfOpenDefects(p) + 1

NumOfOpenDefects(p) + NumOfClosedDefects(p) + 1

One issue here is that failure reporting is not uniform across projects which implies
that the data about defects may not be accurate or timely. This is, however, an important
metric of quality and given that we analyze a large number of projects, the inaccuracies may
even out. Furthermore, we exclude project that do not report defects (i.e., project where
NumOfOpenDefects(p) + NumOfClosedDefects(p) = 0) using SourceForge in our analysis.

Metrics Related to the Value-Based View

The value users put on an open source software project could be quantified indirectly in a
number of ways: number of downloads of a project, usage count, communication about the
project. Our data contains usage count, and we can use usage rate as a direct measure of
quality:

Definition 2 (Rate Of Usage (ROU))

ROU(p) =
NumOfDownloads(p)

AgeOfInDays(p)

We explicitly exclude payment since the projects we are concerned can all be used without
paying for the use.

Metrics Related to the Product View

In the product view, quality is not measured directly, but rather through measuring internal
characteristics of the product. Basili et al. [9] validated a set of design metrics originally
proposed by Chidamber and Kemerer [17] as being useful in predicting fault-prone classes.

3 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

To limit the analysis, we consider one metric here that was found to significantly predict
fault proneness1:

Definition 3 (Weighted Methods per Class (WMC)) The number of methods defined in a class
multiplied by a weight for the each method

We do not have fault data for specific classes in our data so we do not apply this class
level metric directly, but rather average WMC over all classes. Furthermore, as Basili et al.
we set the weight of each method to 1:

Definition 4 (Average Methods per Class (AMC)) The average number of methods defined in
classes in a project

Other product metrics include McCabe’s cyclomatic complexity metric [41] and lines of
code. While there has been considerable controversy surrounding these and other metrics
(cf. e.g. [45]), the metrics are readily calculated and may be used together to provide a metric
of “complexity density” [29]. The cyclomatic complexity of a program corresponds to the
number of independent, linear paths through the control graph of the program.

Definition 5 (Average Complexity Density (ACD)) ACD for a project is the sum of the cyclo-
matic complexities for all methods in classes in the project, divided by the total number of methods.

2.2 Software Architecture Metrics

In principle, software architecture quality can seen in any of the views of Section 1. As an
example, Grady Booch is applying a value-based view in his selection of software architecture
for the Handbook of Software Architecture2.

However, prevailing software architecture analysis methods [24] tend to take a user-
based or manufacturing-based view on software architecture quality. The Architecture
Trade-off Analysis Method (ATAM; [37]), e.g., aims at finding trade-offs and risks in a
software architecture compared to stakeholder requirement. ATAM’s focus on stakeholders
gives it to a large extent a user-based quality view, but a manufacturing-based view is also
included (e.g., in determining whether a specific trade-off is a potential risk). Architecture
analysis methods do not often, however, include specific metrics on software architecture;
rather they focus on the software architecture-specific parts of analyzes. Clements et al. [18],
e.g., describe metrics for complexity only (e.g., “Number of component clusters” and “Depth
of inheritance tree” to predict modifiability and sources of faults).

Moreover, very little has been written specifically on metrics for software architecture,
however “high-level design” metrics or object-oriented design metrics can also to a certain
extent be used for software architecture even though they often work on a detailed level (e.g.,
on specific classes and their methods and fields). In the following, we first look systematically
at papers from architecture-related conferences that contain metrics and subsequently define
a set of metrics for software architecture. Following Basili et al. [9] again, we may, e.g., define
(analogous to WMC):

Definition 6 (Average Classes per Package (ACP)) The Average number of Classes per Package
for a project is the total number of classes divided by the total number of packages

1The validation was done using C++, not Java as in our case
2http://www.handbookofsoftwarearchitecture.com

4 of 25 July 21, 2009

http://www.handbookofsoftwarearchitecture.com

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

2.2.1 Architecture Metrics from Architecture-Related Conferences

Papers from the Working International Conference on Software Architecture (WICSA)

Looking at the three latest WICSA conferences (2008, 2007, and 2005), only three papers
mention metrics in their abstract: [44], [22], and [28]. Shaik et al. [44] analyzed two archi-
tectures using the “Change Propagation (CP) probability” metric and compared the results
to using three coupling-based, object-oriented metrics (“Coupling Between Object Classes
(CBO)”, “Response For a Class”, and “Message Passing Coupling”). The metric is defined
in [4] and produces for every pair of elements, ei and e j, a value, cpi j, which is the probability
that e j will change functionality given a change of functionality in ei and that the system
as a whole does not change functionality. De Almeida et al. [22] present an approach for
producing domain-specific software architecture in which metrics play a role. They do not,
however, precisely state which metrics they are using. Similarly, the only mention of metrics
by Giesecke et al. [28] is that the goal/question/metric quality model [8] should be used to
define project-specific quality models in the context of exploring software architectures that
use different middleware platforms.

Papers from METRICS

Judging from the abstracts of the METRICS series of symposia (2005, 2004, 2003, 2002,
2001, 1999, 1998, 1997, and 1996), only 10 out of more than 250 papers are concerned with
(software) architecture [43, 39, 5, 12, 48, 25, 11, 42, 50, 7].

Nakamura and Basili [43] present a distance metric for architectural change of individual
components using kernel methods. The metric is empirically validated using open source
projects.

Li et al. [39] studied OTS (Off-The-Shelf) component usage through structured inter-
views involving 133 OTS component-based projects. One conclusion was that there was no
evidence that components are chosen based on architecture compliance rather than func-
tionality.

Abdelmoez et al. [5] provide metrics for estimating the probability that an error arising in
one component propagates to another using architecture-level information on components
and connectors.

Baudry et al. [12] consider “micro-architectures” through design patterns in object-
oriented designs and introduce the concept of “testing anti-patterns” and a “testability
grid” that highlights testability risks in choosing a particular micro-architecture.

Van der Hoek et al. [48] produce metrics for product lines architectures (focusing on ser-
vice provision and service utilization metrics) that work on a description in an Architectural
Description Language (ADL). The metrics specifically aims at giving meaningful data in the
context of optionality and variability in product lines.

Evanco [25]3 uses a non-linear model of that relates a “composite complexity measure”
to software defects. The model variables are complexity measures that reflect architectural
decisions made during top-level design such as a derivative of Chidamber’s and Kemerer’s
CBO metric.

[11] is a precursor to [12] that identifies potential testability weaknesses based on UML
class diagrams.

Moses [42] analyzes measurement of subjective software attributes (which may include
attributes related to software architecture) and establishes that module length may influence
the measurement of such attributes.

3also notes that “software complexity cannot be specified by a single software characteristic”

5 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

Weyuker [50] uses the number of project-affecting issues found during architecture re-
views to predict risk of failure. The metric was validated through the application on 36 large
tele-communications projects. The results follow up on and simplifies the metrics proposed
in [7].

Papers from Mining Software Repositories (MSR)

From the five MSR workshops/symposia (MSR 2008, 2007, 2006, 2005, 2004), searching in
abstracts for architecture yields three papers that are concerned with (software) architecture
(out of more than 125 papers) [52, 16, 49].

Yang and Riva [52] present scenarios for software architecture evolution analysis and
an approach to extracting architecture models from repositories. Examples of scenarios are
“Adding a feature”, “Restructuring the design”, and “Studying the evolution of one logical
component”. The authors note that correlating software metrics with architectural evolution
will be of interest, but judging from citations in Google Scholar4, it appears that the authors
have not worked on this any further.

Breu et al. [16] mine Eclipse for functionality (implementing cross-cutting concerns) that
does not align with its architecture. The mining uses formal concept analysis to compute
complex cross-cutting concerns based on simple cross-cutting concerns (sets of methods
where a call to a specific single method is added).

Wermelinger and Yu [49] analyze the evolution of Eclipse plug ins. Their findings
include that most architectural changes take place in milestones and that there is a stable
architectural core of Eclipse that has been present since the first release. The unit of analysis
is Eclipse plug-ins for which meta-data is extracted (through plugin.xml for Eclipse’s old
plug-in architecture and through MANIFEST.MF for Eclipse’s new, OSGi-based plug-in
architecture) and the metrics applied are Number of Plugins (NP), Number of Extension
points (NE), Number of Static Dependencies (NSD), Number of Dynamic Dependencies
(NDD), and and Number of Unused Extension points (NUE).

2.2.2 Architecture Metrics Based on Martin

Martin5 defines a set of principles and metrics related to (package) architectures. One of his
principles is the following

Definition 7 (The Dependency Inversion Principle (DIP)) Depend on abstractions. Do not
depend upon concretions.

To measure adherence to this principle, Martin proposes three metrics:

Definition 8 (INStability (INS)) The number of outgoing dependencies (from classes) for a pack-
age divided by the sum of the number of outgoing and incoming dependencies of the package

Definition 9 (ABStractness (ABS)) The number of abstract classes in a package divided by the
sum of the number of abstract and concrete classes in the package

Definition 10 (NOrmalized Distance (NOD)) The sum of instability and abstractness for a pack-
age, normalized to be in the range of 0 to 1, i.e., for a package p, NOD is |INS(p) + ABS(p) − 1|

4http://scholar.google.dk/scholar?cites=8799306918464863868
5http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

6 of 25 July 21, 2009

http://scholar.google.dk/scholar?cites=8799306918464863868
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

A value of NOD close to zero indicates that if a package has many outgoing dependencies
(INS is high) then it is not abstract (ABS is low) or vice versa. Martin states that if NOD is
close to zero then “the package is abstract in proportion to its outgoing dependencies and
concrete in proportion to its incoming dependencies”.

Assume that for a package, p, NOD(p) is close to zero. If p has a high degree of incoming
dependencies in relation to outgoing dependencies (i.e., INS is close to zero), then p is highly
abstract (ABS(p) close to 1). On the other hand, if p is highly concrete (ABS(p) close to 0),
then p has a high degree of outgoing dependencies in relation to incoming dependencies.
Thus a low NODs for a project can be said to indicate that the project follows the DIP.

In our case, we include interfaces in “abstract classes” in the ABS metric. Furthermore,
for INS, we consider only dependencies expressed on a package level through “import”
statements (realizing that this estimate may be slightly off).

Again, to get a project-level metric, we average the normalized distance over all packages
in a project and get:

Definition 11 (Average Normalized Distance (AND)) AND for a project is the sum of NOD
for all packages divided by the number of packages

2.2.3 Further Architecture Metrics

We hypothesize that the more coupled an architecture is, the harder it is to maintain. The
dependency graph of the packages of a project has a directed edge connecting two packages
if a class from the first package imports the second package (or a class from that package).
Thus a graph on n packages will have at least n edges and at most n2 edges. It therefore
seems natural to assume the graph having E = nk edges. We define the coupling exponent of
a project as the exponent k, and attempt to find a model that describes how k depends on n.
We note that

k =
log E
log n

with 1 ≤ k ≤ 2

and that it is not unrealistic to assume that k tends to 1 with increasing n (if this does not hold
then the average number of imports per package will grow without limit with project size).
This means that k is dependent on the size of projects and not directly usable as a metric
(across projects of differing sizes). This is illustrated in Figure 2.1 for the 1,141 projects we
studied.

We are thus faced with determining a model form which offers enough flexibility to
describe available data, and which gives k ≈ 1 for large n with the added requirement that
the function has a finite limit when n goes to 0. One of the simplest functions to fulfill these
requirement would be a rational function on the form 1 + a/(1 + bn). To allow a little more
flexibility, we add an exponent, c, on n together with an error term giving the model:

k = 1 +
a

1 + bnc +
1

log n
· ε (2.1)

where ε is an N(0, σ2)-distributed error term. Notice that the error term tends to 0 with
increasing n.

Maximum likelihood estimation can now be used to determine the parameters a, b, c,
and σ2; we return to this in the results section (Section 4). Based on this, we now define:

Definition 12 (Degree Of Coupling (DOC)) Given a set of projects, S, where package dependen-
cies are modeled using (2.1), the Degree Of Coupling, DOC, of a project p ∈ S with n packages and

7 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

3.2 10 32 100 316 1000 3162 10000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

#packages in project

lo
g(

pr
oj

ec
t−

de
pe

nd
en

cie
s)

 /
lo

g(
#p

ac
ka

ge
s−

in
−p

ro
je

ct
)

Figure 2.1: Scatter plot of the relationship between project size, n, and coupling exponent,
k, for 1,141 studied projects. The gray line is the model (2.1) for the parameters estimated at
the beginning of Section 4

E dependencies among these packages is the model residual:

DOC(p) = ε = log E − (1 +
a

1 + bnc) log n

where a, b, and c have been estimated with maximum likelihood according to (2.1)

2.3 Choice of Metrics

We here summarize the product and architecture metrics that we have chosen to analyze
further in Table 2.1 and Table 2.2 respectively.

Metric Full Name Explanation
ODR Open Defect Ratio The ratio of open defects to the total

number of defects
ROU Rate Of Usage The number of downloads per month

the project has existed
AMC Average Methods per Class The total number of methods divided

by the total number of classes
ACD Average Complexity Density The sum of cyclomatic complexities for

all methods divided by the number
methods

Table 2.1: Product metrics

8 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

Metric Full Name Explanation
ACP Average Classes per Package The total number of classes divided by

the total number of packages
AND Average Normalized Distance A measure of how abstract (ratio of

abstract classes/interfaces to concrete
classes) and instable (ratio of outgo-
ing dependencies to all dependencies)
packages are on average

DOC Degree Of Coupling The degree to which packages are cou-
pled to other packages

Table 2.2: Architecture metrics

9 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

3 Materials and Methods

Our material is projects on SourceForge1. We focus on Java projects since this makes metrics
calculation uniform and we hypothesize that statistical correlations are more likely to hold
within similar projects. It has been observed that many projects on SourceForge have little
activity [32, 13]. In our analysis, we use projects where there is activity in terms of download
and furthermore if a project has no activity it may still have a software architecture that is of
interest to investigate.

Our method can be divided into three steps:

1. Gathering data on projects, which involved

(a) Gathering meta-data on projects
(b) Filtering projects based on meta-data
(c) Gathering source code for projects
(d) Filtering projects based on source code

2. Measuring filtered projects by applying selected metrics

3. Statistically analyzing measurements

We describe step 1 (“Data Gathering”) and step 2 (“Project Measurement”) next. Step 3
(analysis and results) is described in detail in Chapter 4.

3.1 Data Gathering

3.1.1 Meta-data Gathering

We first collected meta-data on the 21,094 most highly ranked Java projects on 2009-03-17
from SourceForge for which it was possible to get such data. Here “Java projects” were
defined as projects belonging to “trove” 198 at SourceForge and “rank” was the SourceForge
ranking of projects. The data consisted of characteristics such as number of bugs, time of
latest file upload, number of developers, number of open bugs, and SourceForge “rank”.

Below is an example record for the most highly ranked Java project, “Sweet Home 3D”
showing the characteristics that were used in our analysis.

name sweethome3d
url http://sourceforge.net/projects/sweethome3d
bugs_closed 124
bugs_open 21
development_status 5
downloads 2441636
latest_file 2009-03-13
no_developers 8
registered 2005-11-07
repository_modules ["SweetHome3D"]
repository_type cvs

Figure 3.1 to 3.4 show the distribution of the number of developers, development status, project
age, and download characteristics for these projects

1http://www.sourceforge.net

10 of 25 July 21, 2009

http://sourceforge.net/projects/sweethome3d
http://www.sourceforge.net

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

1 2 3 4 5 6 7 8 9 10 11−20 21−30 31−40 41−50 > 50
0

2000

4000

6000

8000

10000

12000

Number of developers

Figure 3.1: Number of developers per project for all projects

Planning Pre−alpha Alpha Beta Stable Mature Inactive
0

1000

2000

3000

4000

5000

6000

Development status

Figure 3.2: Development status of projects for all projects

< 1 1!2 2!3 3!4 4!5 5!6 6!7 7!8 8!9
0

500

1000

1500

2000

2500

3000

3500

4000

Project age (years)

Figure 3.3: Project age for all projects

3.1.2 Filtering Based on Meta-data
Based on the meta-data, we defined a set of relevant projects, i.e., projects amenable to our analyzes.
To be relevant, a project had to:

• Keep track of bugs using SourceForge. We defined this as bugs_closed+ bugs_open being greater

11 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

< 0.01 0.01−0.1 0.1−1 1−10 10−100 > 100
0

2000

4000

6000

8000

10000

Average number of downloads per day

Figure 3.4: Download rate for all projects

than zero. For Sweet Home 3D, the sum is 145 and 12,743 projects did not use SourceForge to
keep track of bugs

• Have a reasonable download rate. We defined this to be downloaded at least 2 times a days
over the project history. For Sweet Home 3D, the download rate estimated on 2009-03-17 was,
e.g., approximately 2,441,636/(2009-03-17 - 2005-11-07 days) = 1,191 downloads per day. 16,159
projects did not fulfill this criterion

• Have a sufficient number of developers to warrant a focus on software architecture in the project.
We defined this as no_developers being at least 2. Sweet Home 3D, e.g., had 8 developers.
11,950 projects had less than two developers

• Have sufficiently advanced development status. We defined this as having a SourceForgedevelopment_status
of at least 4 which is “beta” status. The status of Sweet Home 3D, is “5” which is “stable”. 10,048
projects did not fulfill this

• Have a development history. We defined this as registered being at least 180 days ago at the
time our analysis was made. On 2009-03-17, Sweet Home 3D was, e.g., 1,226 days old. 2,412
projects were too young

The two first criteria are important in that we want to define various quality measures for the projects.
The result of this filtering was 1,570 Java projects.

3.1.3 Source Code Gathering
We attempted to download source code for the filtered projects on 2009-03-30 or revisions with date
stamp 2009-03-302. For projects that used CVS as configuration management tool, we downloaded all
current CVS modules. For projects that used SVN as configuration management tool, we assumed that
the project used the recommended “Trunk” repository layout [20]. Furthermore, we did not follow
external SVN references. This means that we either i) downloaded all the top level “trunk” directory
if there was one or ii) attempted to download all “dir/trunk” directories (where “dir” is a top level
directory) if there was no trunk top level directory.

After source code download, we deleted all non-Java files since that data is irrelevant for our
analysis. In total, 3.3 GB of data and 550,198 Java files were downloaded.

Since our analysis requires source code, we further filtered based on the available number of lines
of code. We set 2,000 SLOC3 as the limit; research by Zhang et al. [53] indicates that for open source
Java projects, the average SLOC per class is around 100 yielding 20 classes as the limit in our case. We
also removed three projects for which our metrics could not be calculated. This further reduced the
number of relevant projects by 429 leaving 1,141 projects.

2This was done through “-D2009-03-30” for CVS and “-r2009-03-30” for Subversion
3SLOC: physical source lines of code, which is the total number of non-blank, non-comment lines in the code

12 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

3.1.4 Classification Filtering
We next classified a subset of the relevant projects as mature by further requiring that development
status should be at least “stable”, that there should be at least four developers, and there should be
more than 7 downloads per day.

Table 3.1 summarizes our filtering and the “relevant” projects are listed in Appendix A.1 while the
“mature” projects are listed in Appendix A.2.

Relevance filtering
(“All projects”)

Classification filtering
(“Mature projects”)

Number of bugs reported ≥ 1 ≥ 1
Project age (days) ≥ 180 ≥ 180
SLOC ≥ 2000 ≥ 2000
Development status 4, 5, 6 5, 6
Download rate (downloads per day) ≥ 2 ≥ 7
Number of developers ≥ 2 ≥ 4
Total number of projects 1,141 282

Table 3.1: Filtering and classification summary

3.2 Metrics Calculation
We use four techniques to gather facts from project source code:

• We use Python and regular expressions on the contents of Java files to populate an (SQLite)
database with data on public classes, packages, and “import”s. We only detect package level
imports that are due to “import” statements

• We use SLOCCount4 to calculate the physical source lines of code of projects. This data is also
put into a database

• We use JavaNCSS5 to calculate cyclomatic complexity and method count of projects. This data
is exported to Rigi Standard Format [51]

• Finally, we use a Java parser (built upon the Java grammar included in JavaCC6) to extract data
on inheritance (and implementation), on classes (and interfaces), and on methods. We do a
simple semantic analyzes that only uses the current project as classpath to qualify references.
Furthermore, we do not take enums or generics into account

Thus, effectively, we have two types of data sets: i) relational data and ii) Rigi data. We initially
worked with relational data, but found out (in line with Beyer et al. [14]) that relational queries were
inefficient in handling our data and thus also worked with data in Rigi format.

With the relational data, we use simple relational queries, e.g., to calculate the number of de-
pendencies between distinct packages in a project. With the Rigi data, we use Crocopat [14] to, e.g.,
calculate ABS, INS, and NOD. The end result is in both cases metrics and numbers that can be used
directly in our statistical analyzes.

4http://www.dwheeler.com/sloccount/
5http://javancss.codehaus.org/
6https://javacc.dev.java.net/

13 of 25 July 21, 2009

http://www.dwheeler.com/sloccount/
http://javancss.codehaus.org/
https://javacc.dev.java.net/

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

4 Results

We now turn to our analysis of the gathered metrics data. We first estimate the parameters of our
DOC model (Section 4.1), then in Section 4.2 and 4.3 we construct and discuss several linear regression
models involving the metrics. Finally in Section 4.4, we discuss some limitations of our analysis.

4.1 Modeling of Coupling
Using (2.1) with the data for all the 1,141 projects used in the study, maximum likelihood estimation
gives a = 0.614, b = 0.136, c=0.804 and σ2 = 0.0185 giving the model

k = 1 +
0.614

1 + 0.136n0.804 +
1

log n
· ε (4.1)

where ε is N(0, σ2 = 0.0185).
We have already shown this model in Figure 2.1 in Section 2.2.3. It is also instructive to see directly

how log E depends on log n. This relationship is depicted in Figure 4.1.

3.2 10 32 100 316 1000 3162

3.2

10

32

100

316

1000

3162

10000

#packages in project (log−scale)

pr
oj

ec
t−

de
pe

nd
en

cie
s

(lo
g−

sc
al

e)

Figure 4.1: Scatter plot of the relationship between number of packages in project, n, and
number of edges, E, in the package dependency graph for 1,141 studied projects. The gray
line is the model (4.1) times log n

4.2 Pairwise Regression Models
Turning to the distribution of calculated metrics, Figure 4.2 shows histograms of of the product and
architecture measures. The raw values of four of the seven metrics have highly positively skewed
distributions. For two of these, AMC and ACP, it sufficed to take logarithms to produce approximately
normal distributions (meaning that AMC and ACP are approximately log-normally distributed), but
for ACD and ROU the distribution was still quite skewed even after taking logarithms. For these we
removed the skew using a Box-Cox power-transformation [15]. The transformation is

y =
(x + α)λ

λ

14 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

where x is the raw variable and y is the transformed variable. The parameters α and λwere estimated
by maximizing the normal likelihood over all 1,141 projects, giving α = −0.038, λ = −1.94 for ROU
and α = −2.34, λ = 2.52 for ACD. Furthermore, it makes sense that ODR is not easily normalized since
this is a metric that depends highly on each project’s culture of bug reporting.

All 1141 projects
282 most mature projects

−0.7−0.6−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

DOC (degree of coupling)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

50

100

150

200

250

AND (average normalized distance)

1 1.8 3.2 5.6 10 18 32 56 100 178
0

100

200

300

400

ACP (average classes/package, log−scale)

1 1.2 1.5 1.8 2.2 2.8 3.8 5.7 18
0

100

200

300

400

ACD (average complexity density, Box−Cox−scale)

1 1.4 2 2.8 4 5.6 7.9 11 16 22 32 45 63
0

100

200

300

400

AMC (average methods/class, log−scale)

2 2.2 2.8 5 14 54 243 1238 7052
0

100

200

300

ROU (rate of usage, downloads/day, Box−Cox scale)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

ODR (open defect ratio)

Figure 4.2: Distribution of measurements for all and mature projects

The histograms in Figure 4.2 indicate that after transformation all the variables are essentially
skew-free, and all except ODR are approximately normally distributed. To investigate normality
further, the number of projects out of the total of 1,141 with a variable that is more extreme than 2 and
3 standard deviations from the mean have been counted. These counts are shown in Table 4.1 together
with the counts that a pure normal distribution would give.

Note that ACP has a little heavy right tail, and DOC has a heavy left tail, but apart from that the
normality assumption holds reasonably well. This indicates (approximately) that AND and DOC are
normally distributed, that AMC and ACP are log-normally distributed, and that ROU and ACD have
a truncated power-normal distribution.

For each of the 12 pairs of architecture and product metrics we have investigated both a straight
line and a parabolic linear regression model taking the architecture metric as an independent variable.

15 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

< −3σ < −2σ > 2σ > 3σ
Normal 1.5 26 26 1.5
box-cox(ROU) 0 32 30 4
log(AMC) 5 19 32 8
box-cox(ACD) 4 23 26 5
log(ACP) 0 12 35 11
AND 0 48 27 2
DOC 10 30 15 1

Table 4.1: Counts of Extreme Values of Metrics, All Projects

Using a 5% significance level, all pairs gave a model significantly different from a constant model.
Figure 4.3 shows a scatter plot of the metric pairs together with the models (in cases where the second
order term was not significantly different from 0, a straight line model is given).

From the top left graph of Figure 4.3 we observe that projects with ACP around 15–20 (minimum is
14.7 for all projects, 18.9 for most mature ones) have significantly fewer open defects than the projects
where ACP is either low or high. In addition we see that the most mature projects have a lower
defect ratio. The defect ratio also depends on AND in a similar way, for AND around 0.3 (0.27 for all,
0.33 for mature) the defect ratio is on average significantly lower than for low and high AND values.
It is in particular interesting to see that low AND values seem to give more defects, in view of the
principle put forward in Martin, that good architecture should have normalized distance close to zero.
Regarding the pair DOC-ODR we see that for all projects the relationship is weak, but for the most
mature projects, it seems again to be advantageous to have close to average coupling, rather than low
or high (minimum is 0.08 for mature).

Turning attention to ROU, we observe that the most downloaded projects among the mature ones
have a tendency to have high ACP. The effect of AND on ROU matches its effect on ODR: For average
AND there are significantly more downloads than when AND is low or high (the maxima occur at at
0.27 for all, 0.24 for mature projects). The DOC-ROU graph indicates that projects with low coupling
tend to have fewer downloads. For the ACP and DOC relationships one might have expected the
opposite effect, i.e. that fewer classes per package and low coupling might be beneficial.

The remaining two dependent variables are the internal product metrics AMC and ACD. For high
quality their values should be low. For mature projects the effect of ACP on these metrics matches the
effect of ACP on defect ratio: average ACP is beneficial (minima at 6.7 and 7.7 respectively). For all
projects the effect is less pronounced. Regarding the effect of AND and DOC on ACD, we again find
the effect to be as expected, and similar to the effect of these metrics on ODR (minima at 0.35 and −0.04
for all projects; 0.42 and 0.01 for mature ones). The dependence of AMC on AND appears minimal,
but its dependence on DOC is however as one might have expected: both low AND and low DOC
should be favorable.

4.3 Multiple Regression Models
In addition to the models shown in Figure 4.3, we have constructed multiple regression models using
step-wise regression (see e.g. [40]). The form of the resulting models is given in Table 4.2, which
lists the model variables in the order that they enter the regression. For example, when constructing
the ODR model, DOC turned out to be the most significant explanatory variable. When a (squared)
variable is not present (for example DOC2 in the ROU model) this is because the corresponding model
term turned out to be non-significant. As an example, the complete ODR model for all projects is

ODR = 0.572− 0.029 ·DOC− 0.15 ·DOC2
− 0.27 · log(ACP) + 0.11 · log(ACP)2

− 1.02 ·AND + 1.87 ·AND2

The columns headed R2 show the proportion of the total variance of the dependent variable which is
explained by the models.

16 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

Dependent var. Model var. All, R2 Mature, R2

ODR DOC,DOC2, log(ACP), log(ACP)2,AND,AND2 4.3% 7.4%
box-cox(ROU) AND,AND2,DOC, log(ACP) 1.5% 5.7%
log(AMC) log(ACP), log(ACP)2,DOC,AND 3.3% 12.9%
box-cox(ACD) AND,AND2, log(ACP), log(ACP)2 2.8% 5.6%

Table 4.2: Regression Models

It is interesting to note that except for the ACD-model, all the architecture metrics are significant
components of the models. This means that their combined effect on the corresponding product metric
is larger than their effect in the simple regression models shown in Figure 4.3. However it must be
admitted that the R2-values are not very impressive. Even though the p-values are highly significant
(since many projects have been analyzed), there is a large amount of spread in our data. The models
can be used to predict average product metrics with confidence, but they would not be very useful to
predict metrics for single projects.

4.4 Limitations
There are a number of important limitations to our study, including

• The projects that we surveyed are all open source projects and moreover open source projects
that are hosted on SourceForge. While the results may not be generalizable to closed source
projects, this points to an area of further research

• Our analysis across projects is based on average values. Concas et al. [21] argue that system
properties (such as WMC) often follow a power law or a log-normal distribution. Thus it may
be problematic to work with the mean (or standard deviation) of these properties to characterize
whole systems or projects. While working with means (or standard deviations) may thus
be representative of a known distribution, we did not assume specific distributions. Further
research could look also at specific distributions of these metrics for the projects investigated

• The analysis is automated. This pertains to the former point and means that we did not check,
e.g., if the downloaded source code could compile or if bug reporting was consistent across
projects. The large set of projects is meant to counter the effects of this. Again, this points to
further research: with added resources, a large set of projects could be checked for consistency
(in terms of source code, bug reporting etc.) and be used as a repository for this type of research

• The DOC metric is dependent on the set of changeable parameters, a, b, and c that are estimated
based on a particular set of projects. It would be worthwhile to try to simplify the DOC model
to obtain some sort of measure that would be reasonably size-independent, but simpler than the
current DOC definition, and hopefully more likely to apply to other project sets.

• We have analyzed a limited number of metrics. In particular, the range of available architecture
metrics appears limited and further research would be needed in that area. In relation to this,
there is a current interest in software architecture research in non-product aspects of software
architecture design, e.g., in design decisions [35] and organizations [19]

17 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

3.2 10 32 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.48−0.34*x+0.15*x2 (p=0.0014,0.0018)

ACP (avg. classes/package, log scale)

O
DR

 (o
pe

n
de

fe
ct

 ra
tio

)

y = 0.44−0.34*x+0.14*x2 (p=0.1,0.26)

All 1141 projects
282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.42−1.0*x+1.9*x2 (p=5.5e−9,7.2e−10)

AND (avg. normalized distance)

O
DR

 (o
pe

n
de

fe
ct

 ra
tio

)

y = 0.45−1.4*x+2.2*x2 (p=0.0041,0.0034)

All 1141 projects
282 most mature projects

−0.6 −0.4 −0.2 0 0.2 0.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.30−0.092*x−0.16*x2 (p=0.082,0.34)

DOC (degree of coupling)

O
DR

 (o
pe

n
de

fe
ct

 ra
tio

)

y = 0.22−0.095*x+0.60*x2 (p=0.0023,0.01)

All 1141 projects
282 most mature projects

3.2 10 32 100

2

2.2

2.8

5

14

54

243

1238

7052

y = 1.6+0.17*x (p=0.37)

ACP (avg. classes/package, log scale)RO
U

(ra
te

 o
f u

sa
ge

 (d
ow

nl
oa

ds
/d

ay
),

Bo
x−

Co
x

sc
al

e)

y = 2.2+0.91*x (p=0.002)

All 1141 projects
282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

2

2.2

2.8

5

14

54

243

1238

7052

y = 1.2+5.1*x−9.2*x2 (p=0.004,0.00089)

AND (avg. normalized distance)RO
U

(ra
te

 o
f u

sa
ge

 (d
ow

nl
oa

ds
/d

ay
),

Bo
x−

Co
x

sc
al

e)

y = 2.8+2.5*x−5.3*x2 (p=0.5,0.31)

All 1141 projects
282 most mature projects

−0.6 −0.4 −0.2 0 0.2 0.4

2

2.2

2.8

5

14

54

243

1238

7052

y = 1.8+0.98*x (p=0.0045)

DOC (degree of coupling)RO
U

(ra
te

 o
f u

sa
ge

 (d
ow

nl
oa

ds
/d

ay
),

Bo
x−

Co
x

sc
al

e)
y = 3.1+1.3*x (p=0.0036)

All 1141 projects
282 most mature projects

3.2 10 32 100

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.80+0.16*x−0.040*x2 (p=0.00017,0.32)

ACP (avg. classes/package, log scale)

AM
C

(a
vg

. m
et

ho
ds

/c
la

ss
, l

og
 s

ca
le

)

y = 1.1−0.46*x+0.28*x2 (p=0.0053,0.015)

All 1141 projects
282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.94−0.12*x (p=0.011)

AND (avg. normalized distance)

AM
C

(a
vg

. m
et

ho
ds

/c
la

ss
, l

og
 s

ca
le

)

y = 0.92−0.028*x (p=0.81)

All 1141 projects
282 most mature projects

−0.6 −0.4 −0.2 0 0.2 0.4

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.91+0.15*x (p=1e−5)

DOC (degree of coupling)

AM
C

(a
vg

. m
et

ho
ds

/c
la

ss
, l

og
 s

ca
le

)

y = 0.92+0.33*x (p=3.6e−7)

All 1141 projects
282 most mature projects

3.2 10 32 100

1

1.2

1.5

1.8

2.2

2.8

3.8

5.7

18

y = 0.42+0.00023*x+0.00013*x2 (p=0.41,0.88)

ACP (avg. classes/package, log scale)

AC
D

(a
vg

. c
om

pl
ex

ity
 d

en
sit

y,
 B

ox
−C

ox
 s

ca
le

)

y = 0.42−0.0097*x+0.0055*x2 (p=0.021,0.016)

All 1141 projects
282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

1

1.2

1.5

1.8

2.2

2.8

3.8

5.7

18

y = 0.42−0.016*x+0.023*x2 (p=1.2e−7,3.4e−5)

AND (avg. normalized distance)

AC
D

(a
vg

. c
om

pl
ex

ity
 d

en
sit

y,
 B

ox
−C

ox
 s

ca
le

)

y = 0.42−0.018*x+0.022*x2 (p=0.0096,0.13)

All 1141 projects
282 most mature projects

−0.6 −0.4 −0.2 0 0.2 0.4

1

1.2

1.5

1.8

2.2

2.8

3.8

5.7

18

y = 0.42−0.00037*x−0.0041*x2 (p=0.4,0.18)

DOC (degree of coupling)

AC
D

(a
vg

. c
om

pl
ex

ity
 d

en
sit

y,
 B

ox
−C

ox
 s

ca
le

)

y = 0.42+0.000017*x−0.0010*x2 (p=0.97,0.82)

All 1141 projects
282 most mature projects

Figure 4.3: Analysis of relationships between product and architecture metrics (When two
p-values are given the first applies to the x coefficient and the second applies to the x2

coefficient)

18 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

5 Discussion

We carried out a fairly comprehensive review of metrics on software design and quality that have been
proposed in the scientific literature, especially as applied to (large) Java projects. We classified these
metrics into architecture metrics, which try to measure the high-level design of software, and product
metrics, which try to measure software implementation. Seven metrics were computed for a large
body of open source Java projects, and subsequently analyzed statistically. To our knowledge this is
the first study of this type.

An important issue in software architecture is that of package coupling, i.e. the degree to which
the packages of a project depend on one another. We hypothesize that the dependency graph becomes
sparser and sparser with project size. We have modelled the effect as E = nk, where n is the number
of packages and E is the number of edges in the graph, and find that for small projects k is around 1.5
and for the largest projects that we analyzed it is around 1.25. Our model then assumes that k tends
to 1 with increasing n. One of our architecture metrics, DOC, is based on this model, but the others
(classes per package, ACP, and normalized distance, AND) are based on previously proposed metrics.
As product metrics we computed open defect ratio, ODR, rate of usage, ROU, methods per class,
AMC, and cyclomatic complexity, ACD, but all of these are (or have been proposed to be) measures
of software quality. For six of these metrics (all but ODR) we established an approximate probability
distribution, valid for our data set.

The analyzed projects consist of 1,141 open source software projects selected from the SourceForge
repository. Criteria for inclusion in the study included that the projects were pure Java projects and
not brand new, used SourceForge to keep track of bugs, had at least 2000 source lines of code, had
at least two developers, had been downloaded at least twice daily on average, and had reached
development status beta. An addition we selected a subset of 282 “mature” projects, which had at
least four developers, had been downloaded at least seven times daily, and had reached development
status stable.

For both sets of projects (i.e., all 1,141, and the 282 mature ones) we constructed regression models
for all 12 pairs of product-architecture metrics as well as multiple regression models for all three archi-
tecture metrics. In all cases statistically significant relationships were discovered. The relationships are
in general stronger for the mature set. For this set and ODR all three architecture metrics give rise to
convex parabolic relationships, meaning that when these metrics give medium values, less error prone
software results than when the metric values are extreme, whether low or high. ODR as predicted by
the models ranges from a minimum of around 0.2 to a maximum of around 0.4. The relationship is
similar for both ACP and AND in the larger project set.

There is also a significant relationship between the architecture metrics and the other product
metrics ROU, AMC and ACD. For the mature set, medium values of ACP go together with low values
of AMC and ACD (both pointing to high quality), and for both project sets medium values of AND give
high ROU and low ACD (again pointing to high quality). In other cases the effect is not as conclusive,
and in a few cases it is even counterintuitive (in particular for the pairs DOC-ROU and DOC-AMC).

In general, the effect of the architecture metrics on the product metrics agrees with what has been
proposed in the literature. The most notable exception is AND. It was formulated as ideally being
0, but our results indicate that it is better to strive for a “compromise” on average when designing
architecture, e.g., a value around 0.3. A similar tentative conclusion can be reached for ACP: to produce
quality software one should aim for about 10 classes per package on average. The effect of DOC on
quality is more inconclusive.

In summary, we have presented evidence of an effect of architecture quality on product quality in
a set of 1,141 open source Java projects. Further research is needed to be able to make predictions on a
per-project basis, but the effect we have found is quite significant statistically, and may be relied on to
draw conclusions about expected software quality given a set of projects.

19 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

A Appendix

A.1 List of All Relevant Projects
a2j, aceoperator, acmus, acqlite, adempiere, adito, aft, aglets, akrogen, amtu, ant-contrib, ant4eclipse,
antforms, antichess, antlreclipse, antrunner, apelon-dts, aperture, apg, applecommander, arbaro,
arch4j, architecturware, archive-crawler, argunet, arianne, arsenal-1, art, ashkelon, asmplugin, asterfax,
astroinfo, astyleclipse, atla, atrisframework, avignon, avis, avr-eclipse, azsmrc, aztsearch, babeldoc,
balie, bananasplitter, barbecue, barcode4j, basegen, basex, basicportal, bazaar, beanlib, beauty-hair-
mng, beepcore-java, benerator, beyondcvs, bie-gpl, bigzip, bioweka, blax, blogbridge, bloof, bluemu-
sic, blueskytime, bodington, bootchart, borg-calendar, botsnscouts, bplusdotnet, bpmspace, bracket-
tracker, bsheet, bt-thud, bt747, buddi-plugins, butler, butterflyxml, buttress, byronstar-sl, camproces-
sor, carbonado, cardwizard, care2002, castordoclet, cb2java, cc-config, ccdtovcd, cctools, cdk, cdox,
centraview, cese, cewolf, cglib, cgupnpjava, chaperon, charliebot, chateverywhere, checkclipse, check-
style, chi, cilib, cmakeed, cml, cmpcs, cobalt, cobertura, cocodonkey, codecover, codesugar, coefficient,
cofax, coffee-soft, cogengine, cogroo, colladarefinery, collections, colorer, complat, components4oaw,
comsuite, concierge, conduitmanager, conexp, controlremote, controltier, coopnet, coras, coreasm,
corewar, cosi-nms, coverlipse, csbi, csql, cssparser, csvjdbc, csvtosql, ctl-dispatch, cuecreator, cvsgrab,
d3web, daffodilcrm, daffodildb, dashboard, databionic-esom, datavision, davenport, dbfit, dbmonster,
dbmt, dbprism, dbunit, dbxml-core, dctm, dddsample, dhcp4java, dictionarymaker, digir, digisimula-
tor, dimdim, dimensionex, discarchiver, distributor, djproject, docsearcher, dom4j, domingo, donner-
laparole, dooble, dotplot, dozer, dr-cube, dragmath, dragon-char, dragonchess, dresden-ocl, drjava,
droid, druid, dsol, dspace, dubman, dump3, dynamicjasper, e-p-i-c, eastwood, easydesigner, easyos,
easysql, easystruts, ebeanorm, ebjava, ebookmanager, ebookme, ebxmlrr, echo, echopoint, eclemma,
eclibatis, eclipse-javacc, eclipse-rbe, eclipse-tools, eclipsejdo, eclipseproject, eclipsesql, eclipsetail,
eclipsetidy, eclipsewiki, eclipsexslt, ecut, egonet, egothor, ehcache, eiffel-mas, eimp, ejb3unit, ejbca,
ejbgen, el4j, elevatorsim, elexis, elips, elml, eln, elvyx, emma, emonic, emulinker, entagged, en-
trainer, epp-rtk, epp-ver-04, eps, eressea, erlide, escher, etex, eug, eulersharp, eurobudget, evaristo,
evetrader, eworld, exist, exo, eyedb, facecart, fedora-commons, filebunker, fina, findbugs, finj, fipa-
os, firemox, fitnesse, fitpro, flashrecruit, flatpack, flesh, flexjson, flexstor, flickrbackup, floggy, fluid,
fnr, foa, fobs, follow, formproc, foucault, fourever, foxtrot, freecs, freedom-erp, freehost3270, freel-
ims, freemarker, freemarker-ide, freemercator, freemind, freesudoku, freetts, freewrl, frinika, ftp4che,
funambol-gmail, furthurnet, fuzzymath, galleon, gametable, ganymede, gate, gateway, gatormail,
gdapi, gdbi, gebora, geekblog, gems, gendiapo, genj, genoviz, georaptor, gestdb, getittogether, gface,
gfd, gham, gild, gistoolkit, gjtapi, glassbox, gml4j, gmod, gngeofrontend, gnuaccounting, gogui,
gomule, gpe4gtk, gpsmap, graysky, greasyspoon, greatcow, greenmail, gridsam, gridsim, grinder,
groimp, grok, gruntspud, gsa-japi, gsbase, gsn, gtads, gted, gui4j, gvf, gwanted, h3270, hammu-
rapi, hansel, hartmath, henplus, hibernate4gwt, hibernatesample, high-scale-lib, hipergate, hl7api,
holongate, hsqldb, htmlparser, htmlunit, httpunit, humaitrader, hypercontent, hypergraph, ical4j,
id3v2-chap-tool, idea-arch, identitymngr, idiet, ihm, ij-plugins, ikvm, impact, importscrubber, in-
canto, inforama, informa, ingenias, insenvim, ion-cms, ipdr, ireport, iscreen, iseries-toolkit, isis, isql,
iteraplan, itext, itracker, ivalidator, ivc, j-algo, j-ftp, j-twat, j2cstranslator, j2ep, j2meunit, j2s, j4fry,
j4sign, jaaslounge, jabaserver, jabberapplet, jabook, jabref, jacareto, jace, jackcess, jacob-project, jad-
clipse, jaffa, jag, jaimbot, jaimlib, jake2, jaligner, jalopy, jameleon, jamm, jamod, jamon, jamos, japs,
japt-proxy, jarp, jasmin, jason, jasperreports, jasperserver, jastor, jatha, jato, java-jml, java3dsloader,
javabdd, javacpc, javacurses, javadc3, javahmo, javahtmlparser, javaisdoomed, javalogging, javamail-
crypto, javamath, javapathfinder, javaswf, javavis, javawebparts, javax-usb, jaxb-builder, jaxe, jaxme,
jaxodraw, jaxor, jazzy, jbarcodebean, jbcheckstyle, jbilling, jboss-opentool, jcache, jcae, jcaif, jcctray,
jchatirc, jchempaint, jchessboard, jclasslib, jcomm, jcommander, jconfig, jcr-webexplorer, jcrbrowser,
jcrontab, jcryptool, jcsc, jct, jcv, jdai, jdbcmanager, jdbforms, jdbm, jdee, jdesigner, jdip, jdivelog,
jdochelper, jduplicate, jedit, jedit-syntax, jena, jenia4faces, jeocaching, jep, jeplite, jeppers, jester, jetrix,
jeuclid, jext, jfcunit, jfern, jffmpeg, jfig, jfilecrypt, jfilesync, jfin, jfire, jflac, jflex, jfreechart, jfuzzylogic,

20 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

jgap, jgen, jgenea, jggapi, jgloss, jgnash, jgossipforum, jgrapht, jgrib, jgrinder, jguard, jhotdraw, jical,
jikes, jikesrvm, jipe, jiprof, jitterbit, jkaiui, jkiwi, jlibrary, jlogic, jmailsrv, jmakeztxt, jmanage, jmath-
tools, jmatlink, jmax, jmdns, jmemorize, jmk, jmlspecs, jmol, jmoney, jmp3renamer, jmri, jmt, jmusic,
jmxplorer, jnetstream, jnlp, jobscheduler, joda-time, jode, joesnmp, jooda, joone, joost, jorgan, jortho,
josgui, josso, jox, jpackit, jpcap, jped, jpen, jpetrinet, jpf, jpicedt, jpilotexam, jpivot, jpl, jpodder, jpos,
jposloader, jppf-project, jprogect, jpublish, jpws, jpydbg, jquantum, jrat, jrdf, jreepad, jrefactory, jrf,
jrobin, jsap, jscheme, jsci, jscicalc, jseditor, jsettlers, jsf-spring, jsh, jskat, jslp, jsmsirl, json-lib, json-
taglib, jspeex, jstock, jsxe, jsyncmanager, jsynoptic, jtcfrost, jtds, jteg, jtestcase, jtidy, jtreeview, jtri,
jttslite, juddi, juggleanim, jugglinglab, juk, jump, jump-pilot, junitbook, junitdoclet, junitee, jupload,
juploadr, jvftp, jvi, jwamtoolconstr, jwap, jwbf, jwebmail, jwebunit, jwic, jwma, jwordnet, jworksheet,
jxquick, jxtaim, jydt, jzjkit, kafenio, kaon, karto, kasai, keepassj2me, kneobase, knowtator, kobjects,
kontor, kowari, krysalis, ksoap2, ktable, kurzfiler, kw-cdt, kxml, lazy8ledger, lectcomm, lemur, lgl,
libusbjava, lily4jedit, liquibase, liquidlnf, llamachat, llrp-toolkit, loadsim, locallucene, loggingsele-
nium, lopica, loro, lpdspooler, lpg, lsid, ltsa, lucene, lumbermill, lunar-eclipse, lunareclipse, lusid,
luxor-xul, mactor, maexplorer, magiccollection, majix, mandarax, mantaray, mapletree, marf, mars-
sim, martyr, matheclipse, mathlib, matrex, mav, maven-plugins, maxent, mc4j, mdr, mecat, mediachest,
medialibrary, meetingpoint, memoranda, meta-extractor, metis-rs, metrics, mfradio, mged, mgo, mh-
ptester, microemulator, microlog, middlegen, midishare, midp-calc, millebv, mime-util, mindraider,
mm8leveleditor, mmbox, mmssuite, moagg, mobilekaraoke, mobilenews, mobilezx, mobup, mock-
maker, mockobjects, modelj, mogwai, moreunit, morph, mov, mp3elf, mpeg7audioenc, mpegparser,
mrpostman, muffin, mule, mx4j, mxeclipse, mycore, mydoggy, myster, mytelly, mytourbook, nake-
dobjects, nanovm, napkinlaf, nekohtml, netsitemais, nettool, networkagent, neuroscholar, neurosdbm,
newsml-toolkit, nfcchat, nice, nitro-nitf, nlpfarm, nmrshiftdb, nntprss, notmac, nsuml, numberrace,
nxtcommand, obe, objectlabkit, obpm, observation, octv, oggcarton, ogre4j, ohioedge, ojax, olap4j,
omegat, omnigene, one-jar, ooimlib, ooweb, open-chord, open-dis, openbasemovil, openbravopos,
opencyc, openharmonise, openhms, openi, openjean, openjms, openjnlp, openkm, openmailarchiva,
openmed, openmi, opennlp, openorb, openp2m, openproj, openrods, openrpg, openshore, open-
sourcecrm, opensubsystems, opensvgviewer, openuss, openwfe, openxava, openxml4j, opproject,
opsi, opt4j, optalgtoolkit, orderlycalls, oreka, osdldbt, osmius, osrmt, osseo, outliner, oval, ovanttasks,
owasp, owlapi, owlvision, owx, oxerp, oxyus, ozone, p-unit, p6spy, palooca, pamguard, pandoras-
jar, paperharbour, paros, pauker, pavlov, pbeans, pdfbox, pdfdoclet, pdfsam, pdune, personalblog,
phex, phosphor, php-java-bridge, phpwebedit, pi4soa, piccolo, picturemetadata, pipe2, piqle, pixory,
pkb, pklite, planeta, planetgenesis, plog4u, pmd, poesia, pojosoft-lms, pokersource, polepos, pollo,
pooka, posterita, ppgp, praya, prefuse, processdash, project-x, properjavardp, proxool, pscs, pushlets,
qalab, qform, qftp, qtitools, quantum, raccoon, rachota, radical, ratool, rcfaces, rcosjava, readmaniac,
recoder, red-piranha, redmin-mylyncon, rem1, rendezvous, reprap, reteppdf, retroweaver, rivernorth,
rmock, robocode, roborescue, rodin-b-sharp, roller, romaframework, routeruler, rptools, rsslibj, rssowl,
rssview, rubyeclipse, runawfe, rvsn00p, sahi, salto-db, salto-framework, sannotations, sax, sblim, sbw,
schemeway, scope, scrabbledict, scrinch, sdljava, sdm, securityfilter, seda, sequalite, serverwatcher,
seven-mock, sharptools, shastahub, shelled, shoddybattle, shop, sisc, skunkdav, smallsql, smartqvt,
smartweb, smc, smoothmetal, smstools, snap, soapui, soccer, softsqueeze, solitairecatan, sonogram,
sourcejammer, sourcetapcrm, sparql, sparta-xml, spindle, sportstracker, spring-beandoc, springlay-
out, sql2java, sqladmin, sqldeveloper, sqltools, sqlunit, squirrel-sql, sslext, starpound, statcvs, statsvn,
stoplicht, storybook2, storytestiq, strangebrew, stringtree, strutsgenerator, strutstestcase, studianalyse,
stxx, sunshade, sunxacml, supercsv, superwaba, sweethome3d, swingosc, swingset, swixat, sword-
app, swt-composer, swtbot, swtfox, symmetricds, sync4j, syncdocs, synclast, systray, ta-lib, tableview,
tacos, tagtraum-jo, taylor, tcljava, telnetd, terppaint, tersus, thing, thingamablog, thinwire, thout, thun-
dergraph, tikal, timecult, timedoctor, timeslottracker, timetrack, timmon, tinysql, tinyvm, tipcon1, tjdo,
tjger, tn5250j, tockit, tolven, torqueide, toscanaj, trackit, trackplus, transferware, transmogrify, travian-
shell, treebeard, treeform, treemap, triplea, triptracker, tudomais, tudu, turquaz, tuxguitar, twinkle,
txtfl, tyrex, u-p2p, ubermq, uced, uddi4j, uengine, uic, uilib-oai, uitags, umldot, umleditor, unbbayes,
unicore, upnp-portmapper, vainstall, valuelist, vassalengine, vcb, veditor, versiontree, veryquickwiki,
vigilog, vijava, villonanny, visualstruts, vnc-tight, vssplugin, vtd-xml, wapmon, watij, wbemser-
vices, web-cat, webadmin, webcamstudio, webcompmath, webcurator, webdav-servlet, webforum,

21 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

webmacro, webman-cms, webonswing, webswell, webunitproj, wfmopen, wh2fo, wicketwebbeans,
wife, wiki-flcelloguy, wiki2xhtml, wintvcap-gui, wisupdecode, wodka, wonder, woped, wordfreak,
ws4d-javame, wsdl4j, wsmostudio, wurfl, wvtool, wx4j, x4l-reload, xbrlapi, xbrowser, xcoder, xdo-
clet, xdoclet-plugins, xebece, xebra, xena, xerlin, xflow, xframe, xgql, xholon, xilize, xinco, xinity,
xins, xml2java, xmldb-org, xmlpipedb, xmm, xmoon, xmsf, xnap, xnap-commons, xnapster, xpairtise,
xparam, xpetstore, xpusp, xradar, xslt-process, xtf, xui, xweb, yajp, yale, yawiki, z390, zk1, zkdesktop,
zkforge, zkstudio, zmpp, zocalo, zplet, zss, zvtm

A.2 List of Mature Projects
adempiere, adito, antrunner, apelon-dts, argunet, arianne, barbecue, barcode4j, basicportal, bluemu-
sic, bpmspace, buttress, centraview, cewolf, cgupnpjava, checkstyle, cmpcs, cobertura, codecover,
cofax, colladarefinery, controlremote, csvjdbc, cuecreator, daffodildb, dbfit, dbunit, dddsample, di-
mensionex, dom4j, domingo, dozer, dragmath, drjava, druid, dspace, dynamicjasper, e-p-i-c, ebookme,
ebxmlrr, eclipse-rbe, eclipsesql, eclipsewiki, ehcache, eimp, ejb3unit, ejbca, emma, eressea, evetrader,
exist, exo, fedora-commons, findbugs, fitnesse, fluid, fourever, freedom-erp, freelims, freemarker,
freemind, freetts, galleon, gate, gems, genj, gestdb, gfd, gistoolkit, gjtapi, glassbox, gmod, grinder,
groimp, hammurapi, hipergate, hl7api, hsqldb, htmlparser, htmlunit, ireport, iseries-toolkit, iteraplan,
itracker, j2meunit, j2s, jabref, jackcess, jacob-project, jaffa, jag, jameleon, japs, jarp, jason, jasperreports,
jasperserver, javacpc, javahmo, javaisdoomed, javax-usb, jaxe, jbilling, jboss-opentool, jchempaint,
jconfig, jcrontab, jdbforms, jdee, jdesigner, jdip, jedit, jena, jenia4faces, jext, jfcunit, jfreechart, jgen,
jgnash, jgossipforum, jgrapht, jikes, jikesrvm, jiprof, jlibrary, jmanage, jmathtools, jmdns, jmol, jmri,
jmt, jmusic, jobscheduler, joda-time, jode, joone, josso, jpcap, jpivot, jpodder, jpos, jrefactory, jrobin, jsf-
spring, jsyncmanager, jtcfrost, jtds, jtidy, jtreeview, jugglinglab, juk, junitbook, junitdoclet, junitee, ju-
pload, juploadr, jwebunit, kasai, kobjects, kontor, krysalis, lemur, llrp-toolkit, lpg, mandarax, mantaray,
mars-sim, mav, mc4j, medialibrary, meta-extractor, metrics, microemulator, middlegen, midishare,
millebv, mindraider, mrpostman, muffin, mx4j, mytourbook, nakedobjects, nanovm, napkinlaf, net-
tool, neuroscholar, neurosdbm, nfcchat, notmac, omegat, opencyc, openi, openorb, openproj, openrpg,
opensourcecrm, openuss, openwfe, openxava, opproject, opsi, ozone, p6spy, palooca, pauker, pdfdo-
clet, pdune, phex, php-java-bridge, pmd, pokersource, processdash, proxool, qform, qftp, quantum,
rachota, robocode, romaframework, rssowl, rssview, runawfe, sahi, sblim, scope, seda, shoddybattle,
sisc, smstools, softsqueeze, sql2java, squirrel-sql, starpound, storybook2, strutsgenerator, strutstest-
case, sweethome3d, swtbot, symmetricds, sync4j, taylor, tcljava, tersus, thout, trackit, trackplus, triplea,
tudu, twinkle, tyrex, uddi4j, uengine, uitags, unicore, vainstall, valuelist, vassalengine, versiontree,
veryquickwiki, villonanny, vnc-tight, vtd-xml, watij, wbemservices, webadmin, webmacro, webman-
cms, wfmopen, wife, wiki2xhtml, wonder, woped, wsdl4j, xbrowser, xdoclet, xdoclet-plugins, xins,
xmm, xpetstore, xui, yale, zk1

22 of 25 July 21, 2009

Bibliography

[1] 8th IEEE International Software Metrics Symposium (METRICS 2002), 4-7 June 2002, Ottawa, Canada.
IEEE Computer Society, 2002.

[2] 9th IEEE International Software Metrics Symposium (METRICS 2003), 3-5 September 2003, Sydney,
Australia. IEEE Computer Society, 2003.

[3] 11th IEEE International Symposium on Software Metrics (METRICS 2005), 19-22 September 2005, Como
Italy. IEEE Computer Society, 2005.

[4] W. Abdelmoez, M. Shereshevsky, R. Gunnalan, H.H. Ammar, Bo Yu, S. Bogazzi, M. Korkmaz, and
A. Mili. Quantifying software architectures: an analysis of change propagation probabilities. In
Computer Systems and Applications, 2005. The 3rd ACS/IEEE International Conference on, pages 124–,
2005.

[5] Walid Abdelmoez, Diaa Eldin M. Nassar, Mark Shereshevsky, Nicholay Gradetsky, Rajesh Gun-
nalan, Hany H. Ammar, Bo Yu, and Ali Mili. Error propagation in software architectures. In IEEE
METRICS, pages 384–393. IEEE Computer Society, 2004.

[6] C. Alexander. The timeless way of building. Oxford University Press, USA, 1979.

[7] Alberto Avritzer and Elaine J. Weyuker. Investigating metrics for architectural assessment. In
IEEE METRICS, pages 4–10. IEEE Computer Society, 1998.

[8] Victor R. Basili. Software modeling and measurement: the goal/question/metric paradigm. Tech-
nical report, University of Maryland at College Park, College Park, MD, USA, 1992.

[9] V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-oriented design metrics as quality
indicators. Software Engineering, IEEE Transactions on, 22(10):751–761, Oct 1996.

[10] L. Bass, P. Clements, and R. Kazman. Software architecture in practice. Addison-Wesley Professional,
2 edition, 2003.

[11] Benoit Baudry, Yves Le Traon, and Gerson Sunyé. Testability analysis of a uml class diagram. In
IEEE METRICS [1], pages 54–.

[12] Benoit Baudry, Yves Le Traon, Gerson Sunyé, and Jean-Marc Jézéquel. Measuring and improving
design patterns testability. In IEEE METRICS [2], pages 50–.

[13] Karl Beecher, Cornelia Boldyreff, Andrea Capiluppi, and Stephen Rank. Evolutionary success
of open source software: an investigation into exogenous drivers. In Proceedings of the Third
International ERCIM Symposium on Software Evolution (Software Evolution 2007), pages 124–136,
2007.

[14] D. Beyer, A. Noack, and C. Lewerentz. Efficient relational calculation for software analysis. IEEE
Transactions on Software Engineering, 31(2):137–149, 2005.

[15] G.E.P. Box and D.R. Cox. An analysis of transformations. Journal of the Royal Statistical Society.
Series B, 26:211–252, 1964.

23

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

[16] Silvia Breu, Thomas Zimmermann, and Christian Lindig. Mining eclipse for cross-cutting con-
cerns. In Diehl et al. [23], pages 94–97.

[17] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. Software Engineering,
IEEE Transactions on, 20(6):476–493, Jun 1994.

[18] P. Clements, R. Kazman, and M. Klein. Evaluating software architectures: methods and case studies.
Addison-Wesley Professional, 2002.

[19] P. Clements, R. Kazman, M. Klein, D. Devesh, S. Reddy, and P. Verma. The duties, skills, and
knowledge of software architects. In Software Architecture, 2007. WICSA ’07. The Working IEEE/IFIP
Conference on, pages 20–23, Jan. 2007.

[20] Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Control with Subversion.
For Subversion 1.4. Red-Bean online version. Compiled from r2866, 2009.

[21] Giulio Concas, Michele Marchesi, Sandro Pinna, and Nicola Serra. Power-laws in a large object-
oriented software system. IEEE Transactions on Software Engineering, 33(10):687–708, 2007.

[22] Eduardo Santana de Almeida, Alexandre Alvaro, Vinicius Cardoso Garcia, Leandro Marques
Nascimento, Silvio Romero de Lemos Meira, and Daniel Lucrédio. Designing domain-specific
software architecture (dssa): Towards a new approach. In Gorton et al. [30], page 30.

[23] Stephan Diehl, Harald Gall, and Ahmed E. Hassan, editors. Proceedings of the 2006 International
Workshop on Mining Software Repositories, MSR 2006, Shanghai, China, May 22-23, 2006. ACM, 2006.

[24] L. Dobrica and E. Niemela. A survey on software architecture analysis methods. IEEE Transactions
on software Engineering, 28(7):638–653, 2002.

[25] William M. Evanco. Architectural tradeoffs at the object. In IEEE METRICS [1], pages 43–53.

[26] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: elements of reusable object-oriented
software. Addison-wesley Reading, MA, 1995.

[27] David A. Garvin. What does "product quality" really mean? Sloan Management Review, 26(1):25–
43, 1984.

[28] Simon Giesecke, Johannes Bornhold, and Wilhelm Hasselbring. Middleware-induced architec-
tural style modelling for architecture exploration. In Gorton et al. [30], page 21.

[29] G.K. Gill and C.F. Kemerer. Cyclomatic complexity density and software maintenance produc-
tivity. Software Engineering, IEEE Transactions on, 17(12):1284–1288, Dec 1991.

[30] Ian Gorton, Jeff Tyree, and Dilip Soni, editors. Sixth Working IEEE / IFIP Conference on Software
Architecture (WICSA 2007), 6-9 January 2005, Mumbai, Maharashtra, India. IEEE Computer Society,
2007.

[31] Ahmed E. Hassan, Michele Lanza, and Michael W. Godfrey, editors. Fith International Workshop
on Mining Software Repositories, MSR 2008 (ICSE Workshop), Leipzig, Germany, May 10-11, 2008,
Proceedings. ACM, 2008.

[32] Israel Herraiz, Jesús M. González-Barahona, and Gregorio Robles. Determinism and evolution.
In Hassan et al. [31], pages 1–10.

[33] ISO/IEC. Software engineering – Product quality – Part 1: Quality model, 2001. ISO/IEC 9126-1:2001.

[34] ISO/IEC. Information technology – Process assessment – Part 1: Concepts and vocabulary, 2004. ISO/IEC
15504-1:2004.

24 of 25 July 21, 2009

An Empirical Study of Open Source Software Architectures’ Effect on Product Quality

[35] A. Jansen and J. Bosch. Software architecture as a set of architectural design decisions. In Software
Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP Conference on, pages 109–120, 2005.

[36] S.H. Kan. Metrics and models in software quality engineering. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 2002.

[37] Rick Kazman, Mark Klein, and Paul Clements. Atam: Method for architecture evaluation.
Technical report, CMU/SEI, August 2000.

[38] Barbara Kitchenham and Shari Lawrence Pfleeger. Software quality: The elusive target. IEEE
Software, pages 12–21, January 1996.

[39] Jingyue Li, Reidar Conradi, Odd Petter N. Slyngstad, Christian Bunse, Muhammad Umair Ahmed
Khan, Marco Torchiano, and Maurizio Morisio. Validation of new theses on off-the-shelf compo-
nent based development. In IEEE METRICS [3], page 26.

[40] Bernard W. Lindgren. Statistcal Theory. McMillan, New York, 3 edition, 1976.

[41] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering, 2(4):308–320,
1976.

[42] John Moses. A consideration of the impact of interactions with module effects on the direct
measurement of subjective software attributes. In IEEE METRICS, pages 112–123. IEEE Computer
Society, 2001.

[43] Taiga Nakamura and Victor R. Basili. Metrics of software architecture changes based on structural
distance. In IEEE METRICS [3], page 8.

[44] I. Shaik, Walid Abdelmoez, Rajesh Gunnalan, Mark Shereshevsky, A. Zeid, Hany H. Ammar, Ali
Mili, and Christopher P. Fuhrman. Change propagation for assessing design quality of software
architectures. In WICSA, pages 205–208. IEEE Computer Society, 2005.

[45] M. Shepperd. A critique of cyclomatic complexity as a software metric. Software Engineering
Journal, 3(2):30–36, Mar 1988.

[46] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Foundations, Theory, and
Practice. Wiley, 2009.

[47] CMMI Product Team. CMMI for Development, Version 1.2. Technical Report CMU/SEI-2006-TR-
008, Software Engineering Institute, Carnegie Mellon University, 2006.

[48] André van der Hoek, Ebru Dincel, and Nenad Medvidovic. Using service utilization metrics to
assess the structure of product line architectures. In IEEE METRICS [2], pages 298–308.

[49] Michel Wermelinger and Yijun Yu. Analyzing the evolution of eclipse plugins. In Hassan et al.
[31], pages 133–136.

[50] Elaine J. Weyuker. Predicting project risk from architecture reviews. In IEEE METRICS, pages
82–90. IEEE Computer Society, 1999.

[51] Kenny Wong. Rigi User’s Manual. Department of Computer Science, University of Victoria, July
1996. http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html.

[52] Yaojin Yang and Claudio Riva. Scenarios for mining the software architecture evolution. In Diehl
et al. [23], pages 10–13.

[53] Hongyu Zhang, Hee Beng Kuan Tan, and Michele Marchesi. The distribution of program sizes
and its implications: An eclipse case study. CoRR, abs/0905.2288, 2009.

25 of 25 July 21, 2009

http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html

	Introduction
	Metrics
	Product Metrics
	Software Architecture Metrics
	Architecture Metrics from Architecture-Related Conferences
	Architecture Metrics Based on Martin
	Further Architecture Metrics

	Choice of Metrics

	Materials and Methods
	Data Gathering
	Meta-data Gathering
	Filtering Based on Meta-data
	Source Code Gathering
	Classification Filtering

	Metrics Calculation

	Results
	Modeling of Coupling
	Pairwise Regression Models
	Multiple Regression Models
	Limitations

	Discussion
	Appendix
	List of All Relevant Projects
	List of Mature Projects

