
Distributed Testing of Cloud Computing Applications
Using the TTCN-3-based Jata Test Framework

Hlödver Tómasson
Verisure Innovation AB

Ångbåtsbron 1
211 20 Malmö, Sweden

hlodver.tomasson@verisure.com

Helmut Neukirchen
University of Iceland

Dunhagi 5
107 Reykjavík, Iceland

helmut@hi.is

ABSTRACT
With a new technology, such as cloud computing, new chal-
lenges are introduced to software engineering. This paper
investigates the challenges of software testing in elastic cloud
computing environments as well as the applicability of con-
cepts of the Conformance Testing Methodology and Frame-
work (CTMF) and the open-source test framework Jata for
distributed testing of cloud computing applications. Jata
provides concepts from the standardised test language Test-
ing and Test Control Notation version 3 (TTCN-3) to im-
plement distributed test cases directly in Java. As the main
contribution, a case study of testing a distributed cloud ap-
plication has been conducted. It reveals that there are spe-
cific considerations to be made to deal with the elastic nature
of a cloud environment which advises automated run-time
configuration of the test cases to adjust to the current envi-
ronment.

1. INTRODUCTION
Cloud computing has become a viable and common alterna-
tive to traditional data centers, hosting services and private
IT infrastructures. Cloud computing gives the ability to
scale an IT infrastructure up and down by only using and
paying for just as many resources as currently needed (“elas-
tic” and “pay-per-use”) [2, 10].

While cloud computing is not a fundamentally new
paradigm, but based on existing technologies, it is far from
trivial and introduces new challenges that make applications
running in a cloud computing environment more complex
and their development more error-prone. For example, the
Infrastructure as a Service (IaaS) service model of cloud
computing is heavily based on virtualisation technology for
CPU, storage and networking. As a result, the underlying
environment changes when scaling in an elastic way. Soft-
ware testing needs to address cloud-specific issues to avoid
the risk that it lags behind in following the fast growing
trends of the cloud computing industry.

As the main contribution, this paper investigates challenges
of distributed testing in an elastic IaaS cloud computing en-
vironment as well as the applicability of concepts of the Con-
formance Testing Methodology and Framework (CTMF) [8]
and the open-source test framework Jata [17] that pro-
vides concepts from the Testing and Test Control Nota-
tion (TTCN-3) [4]. The approach that we pursue is similar
to the approach that one of the authors has applied when
investigating issues in testing grid computing applications
with TTCN-3 [13]. However, the grid computing environ-
ment was static and lacked completely the challenges of the
elastic nature of a cloud computing environment.

This paper is structured as follows: subsequent to this in-
troduction, we provide foundations and discuss challenges.
Afterwards, in Sect. 3, we describe the cloud application
that is put under test in our case study. In Sect. 4, the ac-
tual case study of testing the cloud application from Sect. 3
is presented. Related work is discussed in Sect. 5, before we
conclude with a summary and outlook.

2. FOUNDATIONS AND CHALLENGES
In the following, we provide an overview on cloud computing,
on CTMF, and on the test specification language TTCN-3.
Furthermore, an introduction is given on the Jata test frame-
work that can be used to implement distributed tests. We
also point out challenges for testing in a cloud environment.

2.1 Cloud Computing
The National Institute of Standards and Technology (NIST)
defines cloud computing as“a model for enabling convenient,
on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, appli-
cations, and services) that can be rapidly provisioned and
released with minimal management effort or service provider
interaction” [10].

2.1.1 Infrastructure as a Service.
In the Infrastructure as a Service (IaaS) cloud computing
service model [10], the computational resources are typi-
cally provided by Virtual Machines (VMs). A cloud applica-
tion developer has to take make sure that VM instances are
started and terminated on demand in order to scale accord-
ing to the current load. To this aim, an IaaS cloud environ-
ment provides an Application Programming Interface (API).
It is the responsibility of the cloud application developer to
take care that the cloud application is a distributed appli-
cation that utilises all available VM instances and that the



application gets reconfigured if the number of VM instances
changes. This may also include cloud firewall settings with
respect to the virtual network connections between the VM
instances within the cloud and to the outside.

The Amazon Elastic Compute Cloud (EC2) [1] (comple-
mented with further services of the Amazon Web Services
(AWS) family) is a popular IaaS cloud provider and thus its
API can be considered as industry standard. An example of
an alternative implementation of the EC2 API (and further
AWS services) is the open-source/open-core Eucalyptus [5]
that can be used to install a local, private cloud.

2.1.2 Challenges.
Typically, it is out of control of the developer and the appli-
cation running in a cloud environment which IP address and
MAC address is assigned to a newly launched VM instance.
This may lead to various problems when running and testing
software in a cloud environment.

For example, software (such as libraries to be used by the
cloud application or test tools running in the test environ-
ment) with a license management which is tied to a unique
property of a customer’s computer, typically the MAC ad-
dresses, cannot be used if the MAC addresses are not fixed.1

Another example are changing IP addresses that make the
addresses of test nodes unpredictable. Therefore, a run-time
configuration of the test cases is required with respect to any
IP address that needs to be known as part of testing.2

2.2 Conformance Testing Methodology and
Framework

The ISO/IEC multipart standard 9464 OSI Conformance
Testing Methodology and Framework (CTMF) [8] provides
proven concepts (yielding benefits comparable to (design)
patterns) for conformance testing of Open Systems Intercon-
nection (OSI) protocol implementations. Despite the OSI
scope, CTMF has been successfully applied for testing other
kinds of distributed systems than OSI network protocols.
Due to our experience from adopting CTMF for grid appli-
cation testing, we decided to adopt relevant concepts from
CTMF as well for distributed testing of cloud applications.
In particular from Part 2 of CTMF, the test suite genera-
tion procedures and test architectures are applicable in our
context whereas other parts of CTMF are too specific with
respect to either OSI protocols or the scope of conformance
testing3.

1Just after the case study described in this paper had been
conducted, Amazon EC2 added the concept of an Elastic
Network Interface which is a virtual network interface that
exists separate from VM instances and thus keeps its MAC
address. It can then be added to a VM instance and thus
provides elastic VM instances with a fixed MAC address.
2While Amazon EC2 provides Elastic IP addresses that stay
fixed and can be dynamically mapped to VM instances, the
number of such elastic IP addresses is limited, as they are
mainly intended to provide a fixed public IP address to ac-
cess the cloud application from outside, for example, some
web interface. Meanwhile, Amazon introduced the Virtual
Private Cloud (VPC) service that allows to create a com-
plete virtual network with defined IP addresses.
3Conformance testing is about adherence of implementa-
tions to standards, for example to make statements which

Figure 1: CTMF Multi-party test architecture

CTMF involves the identification of the requirements to be
tested for which then a set of test purposes has to be cre-
ated. A test purpose is an informal description of a test case.
Next, a test architecture that is suitable for a test purpose
has to be selected. Then, for each test purpose, a test case
is designed based on the chosen test architecture. CTMF
suggests to use as test notation the Tree and Tabular Com-
bined Notation (TTCN) that is standardised in Part 3 of
CTMF. TTCN is a predecessor of TTCN-3 (see Sect. 2.3).
Both, TTCN and TTCN-3, are abstract languages to specify
abstract test suites containing test cases that are implemen-
tation independent. To obtain executable test cases, the
abstract test cases need to be implemented either manually
or by generating them automatically from the abstract test
cases. A test suite comprises multiple test cases.

The test architectures provided by CTMF are called test
methods. Just like TTCN, they abstract from implemen-
tation details by introducing the constituents Implementa-
tion Under Test (IUT), System Under Test (SUT)4, testers,
Points of Control and Observation (PCOs), and the rela-
tions between them. The PCOs are used by the testers to
stimulate and observe the SUT.

For our purpose, the CTMF Multi-party test method is suit-
able. It is depicted in Fig. 1. The SUT consists of the IUT
and an underlying service provider (in our case: the cloud
environment) via which the IUT communicates with other
peer entities. The IUT is controlled and observed by an
Upper Tester (UT) and one or more Lower Testers (LTs).
The UT takes the role of a higher layer or user of the IUT,
the LTs replace the peer entities that together with the IUT
provide the service used by the UT. The PCOs are the in-
terfaces used by UT and LTs to communicate with the SUT.
These interfaces are given by the SUT. In contrast are the

optional parts of protocol standards are implemented. How-
ever, in our case study, we perform functional testing in gen-
eral which is similar to conformance testing as both apply
black-box testing approaches: testing via external interfaces
without making any assumption about internals.
4The IUT is what shall be actually tested; however, some
IUT interfaces involved in testing are only accessible via
some service provider, for example via a network stack in
order to send a network message to the IUT or via a com-
plete cloud environment in which the IUT is running. While
such a service provider is not subject of testing, it is unavoid-
ably involved during testing because a further isolation (unit
testing) of the IUT is either not possible or not reasonable.



Test Coordination Procedures (TCPs)5 that are needed to
coordinate the testers to reach the common test purpose:
the TCPs can be based on interfaces and protocols that are
independent from the SUT. Using the CTMF multi-party
test method results in testers that are concurrently running
and as these are typically running on different nodes, the
resulting test is a distributed test.6

2.2.1 Challenges.
It is assumed that the underlying service provider has al-
ready been adequately tested: only in this case, the actual
service provider implementation used in a test environment
does not matter. However, for cloud environments, no con-
formance test suites exist to test them. So even though, for
example, Eucalyptus implements the Amazon EC2 API, it
may behave differently than Amazon EC2. Therefore, using
a local Eucalyptus cloud environment is not an adequate
test environment for a cloud application that will later run
in the Amazon EC2 as a production environment.

2.3 TTCN-3
The Testing and Test Control Notation (TTCN-3) [4, 7] is
a test specification language standardised by the European
Telecommunications Standards Institute (ETSI). TTCN-3
is a successor of TTCN (Part 3 of CTMF), but all OSI-
specific concepts have been removed or generalised. As it
is a standardised test language, tool-support from multiple
vendors is available. TTCN-3 is widely used in the telecom-
munication domain, but also in other domains such as the
automotive industry or for testing implementations of Inter-
net protocols such as the Session Initiation Protocol (SIP).

In contrast to other test technologies, such as JUnit,
TTCN-3 supports distributed tests. It does so by means of
Test Components (TCs): in addition to the Main Test Com-
ponent (MTC), further Parallel Test Components (PTCs)
can be created dynamically. TCs run concurrently and may
therefore execute test behavior in parallel to each other.
They can be connected to each other or mapped to the SUT
interfaces via ports. These concepts allow the creation of
distributed test architectures, for example instantiations of
the CTMF test methods by using the TCs to realise upper
and lower testers and the ports take the role of PCOs. (Also
the interfaces used for the TCPs can be modelled as ports).
A system component is used to define the interface to the
SUT based on the ports contained in that component.

For the communication between TCs and with the SUT,
operations such as send and receive (TTCN-3 language
keywords are printed bold) can be used to transmit messages
via ports. The values of these message are specified using so
called templates: TTCN-3 templates may involve wildcards
and thus provide a powerful matching mechanism to check
whether expected test data has been received or not.

Further concepts that ease test specification are test verdict
handling, timers, and alternatives and defaults: Alternatives
can be used to describe branching test behaviour where a

5Not to be confused with the Transmission Control Protocol
(TCP) from the Internet protocol family.
6Note that the IUT itself is not necessarily distributed even
if the corresponding test is distributed.

test case reacts differently based on observed events such as
received messages or expiration of timers. Defaults provide
default reactions for alternative behavior which is typically
used to deal with unexpected events. In addition to these
test-specific concepts, most of the concepts of general pur-
pose programming languages are available as well. Sample
TTCN-3 code will be later explained in Section 4.3.

TTCN-3 test suites are abstract. For obtaining an Exe-
cutable Test Suite (ETS), the TTCN-3 statements of the
Abstract Test Suite (ATS) are typically translated by a
TTCN-3 compiler into statements of an implementation lan-
guage such as Java or C/C++. In addition, the abstract
communication mechanisms need to be adapted to concrete
communication mechanisms as well as the abstract messages
need to be encoded and decoded into/from some concrete
bit-level format. For that purpose, the TTCN-3 standard
suggests to use a System Adapter (SA) that implements op-
erations such as send and receive operations to communi-
cate with the SUT and a Coding/Decoding (CD) entity.

2.3.1 Challenges.
Some challenges arise when trying to use TTCN-3 for dis-
tributed testing in a cloud environment: First, only few of
the TTCN-3 tools support distributed testing where differ-
ent TCs and their ports are located on different network
nodes. Second, many commercial TTCN-3 tools use a li-
cense enforcement technology that ties a license to a unique
property of a customer’s computer, typically the MAC ad-
dress. As described in Sect. 2.1, this leads to problems in an
elastic and virtualised environment and therefore, solutions
for this problem need to be provided either by the TTCN-3
tool vendor or the cloud provider.

2.4 Jata Framework
Jata [17] is an object-oriented framework for implementing
distributed tests in Java. Since it is free and open-source [9],
none of the license issues of running TTCN-3 tools to execute
test cases in a cloud environment (as discussed in Sects. 2.1
and 2.3) can arise.

Jata supports many concepts from TTCN-3, such as: test
components (TCs), ports, alternatives, timers, and ver-
dicts. Therefore, Jata can be used to implement an abstract
TTCN-3 test suite, thus turning it into an ETS. Providing
the TTCN-3 concepts as classes of a Java framework has
the advantage that a Java programmer immediately feels
familiar7 when implementing distributed tests.

Even though test cases can be directly implemented using
Jata without a TTCN-3 ATS as intermediate step, the test
concepts that are borrowed from TTCN-3 need to be un-
derstood, so a Java programmer needs nevertheless some
knowledge of TTCN-3. Using Java has the disadvantage
that not all TTCN-3 concepts can be mapped well on the
Java syntax. In addition, Jata does not support all TTCN-3
concepts: for example, the template pattern matching mech-
anism needs to be implemented on low-level in Java as well
as defaults. Furthermore, it has to be noted that while Jata

7The Jata framework does not always adhere to Java naming
conventions which may be confusing for a Java programmer,
though.



Figure 2: Turnip application architecture

supports distributed testing involving multiple test nodes,
only the ports of a TC themselves can be physically dis-
tributed – the behaviours of all TCs still run on one single
node as multiple concurrent threads within one process. In
case of such remote ports, the Java RMI middleware technol-
ogy is used by default for communication between the TCs
and the ports that reside on remote nodes.

2.4.1 Challenges.
As Jata is new, there is not much experience and a lack of
documentation. Furthermore, Jata does not implement all
TTCN-3 features.

3. CLOUD APPLICATION
In order to study distributed testing of cloud computing
applications, we used Sunflow [15], a photo-realistic image
rendering system that supports to split the rendering prob-
lem into smaller subtasks (buckets) that can be processed
in parallel. (Like Jata, Sunflow is implemented in Java, but
our black-box testing approach does not require this.) While
Sunflow supports well multicore CPUs, it does not support
distributed computing in a cloud environment. However,
it has been adapted in a preceding project to run in the
Amazon EC2 cloud environment by creating worker node
instances on demand [14]. This adaptation is called Turnip
and we use it as a sample cloud application in our case study.

The distributed architecture of Turnip is shown in Fig. 2.
It consists of a Request manager component that provides a
Web-based (HTML/HTTP) user interface to initiate the ad-
dition of rendering worker nodes, starting the rendering job,
and to monitor and display the rendering progress. Inter-
nally, the Request manager does some application manage-
ment by creating EC2 VM instances, starting Sunflow pro-
cesses on each instance and collecting their results. The Java
code is executed within OSGi [11] containers: using OSGi
eases mainly deployment [14], but beyond this, a further
OSGi facility, Remote OSGi (R-OSGi), is used for the com-
munication between the Request manager and the worker
nodes. The resulting distributed application runs within
the Amazon EC2 cloud environment: the EC2 API is used
to create new VM instances for the worker nodes.

Fig. 3 shows a Turnip scenario with two worker nodes, each
of them processing one bucket: first, a work request is sub-
mitted via the web interface to the Request manager. In
steps 2 and 3, the Request manager initalises the Sunflow
workers which then ask the Request manager for the next
bucket to render (steps 4 and 5). After a worker finishes a

Figure 3: Distributed rendering scenario

task, it sends the resulting image part to the Request man-
ager (steps 6 and 8). The web interface polls the Request
manager periodically for intermediate results (Step 7). If
rendering is completed, the web interface requests the final
composed image (Step 9).

4. CLOUD APPLICATION TESTING CASE
STUDY

To investigate challenges and obstacles in distributed test-
ing of applications running in an elastic cloud environment,
we used the described Turnip cloud application and followed
the applicable procedures of CTMF as outlined in Sect. 2.2:
we started with creating a test purpose and selected a test
architecture that is appropriate for testing the test purpose.
However, to avoid any license issues in the cloud test envi-
ronment (see Sects. 2.1 and 2.3), we did not use a commer-
cial TTCN-3 tool to generate the ETS, but implemented
the test cases using the Jata framework. A further moti-
vation for using Jata was that we wanted to evaluate the
applicability and maturity of Jata.

4.1 Test Purpose
As our investigation is about distributed testing, we focused
on the testing of requirements for the Request manager
which communicates via its Web-based user interface and
–as part of its application management– with multiple par-
ties (the workers) and thus requires a distributed test archi-
tecture. The considered test purpose is:

Assess that the rendering job information en-
tered via the Web-based user interface to the Re-
quest manager results in the correct sequence of
actions of the Request manager with respect to
the application management: the proper distri-
bution of tasks to the workers and merging their
partial rendering outputs to a final image.

The correct sequence of actions (for a scenario with two
workers) is essentially already shown in Fig. 3: the Request
manager is the IUT, the initial stimulus via the Web in-
terface is provided by the test system, and the test system
replaces the workers by stubs that observe the messages send
to the workers and send back responses to the IUT.



Figure 4: Test architecture (CTMF Multi-party)

A functional black-box test is performed. The underlying
service providers (Amazon EC2, Apache Felix OSGi con-
tainer) are expected to be correct: we do for example not
explicitly test that EC2 actually creates a VM instance when
the Request manager uses the EC2 API for that purpose
(however, during a test of the Request manager, it would
become obvious if an expected VM instance is not running).
Furthermore, we test no negative scenarios such as timeouts
or wrong input data.

4.2 Test Architecture
For turning the test purpose into a test case, a suitable test
architecture needs to be selected in order to be able to assign
test behaviour to the different TCs of the test architecture.
In our case, the request manager is the IUT, the other con-
stituents of the cloud application need to be replaced by
testers: the CTMF Multi-party test method is applicable.

The used instantiation of the Multi-party test method is
shown in Fig. 4. For simplicity, we use a scenario with two
worker nodes. The upper tester role is filled by the MTC,
for the lower testers, PTCs are used. They coordinate them-
selves internally via connected ports and communicate with
the SUT via ports that are mapped to the ports of the sys-
tem component. The MTC controls and observes the SUT
via an HTTP connection and to observe the calls made by
the SUT via R-OSGi to the workers, they get intercepted
by test stubs that forward their observations to the PTCs8.
The MTC can then determine a test verdict based on its
own observations and the ones made by the PTCs.

The underlying service providers are only implicitly depicted
in Fig. 4: for example, the R-OSGi-based communication is
provided by Apache Felix, all TCP-based communication is
provided by the TCP/IP stack of the Linux operating system

8Using for this a different communication mechanism (Java
RMI) avoids probe effects where the communication of the
test system could influence the communication of the SUT.

Figure 5: Message sequence of abstract test case

running inside a VM instance, and all nodes are running
within the EC2 cloud environment.

4.3 Abstract Test Case
The test purpose may now be turned into a test case that
fits the selected test architecture. To this aim, the test be-
haviour is accordingly distributed to the involved TCs and
necessary Test Coordination Procedures (TCPs) are added.
The resulting sequence of abstract messages is shown in
Fig. 5. It is derived from the scenario in Fig. 3 and con-
tains the additional TCPs in steps 6 and 7 and the setting
of a test verdict by the MTC based on the observations.

The MTC starts the test case by sending the ’start rendering
job’ stimulus (Step 1). The SUT that thinks it is announc-
ing real workers to start rendering, is actually calling PTCs
(steps 2 and 3). The PTCs ask for the next bucket to ren-
der as would be expected from a real worker (steps 4 and 5).
When a PTC receives the bucket information, it sends this
information to the MTC (steps 6 and 8), which collects for
verification all knowledge about the rendering tasks that are
created by the SUT. The PTC creates a dummy image to
send back as job result to the SUT as is expected from ren-
dering tasks (steps 7 and 9). Finally, when the MTC has
received all expected bucket information it downloads the
composed image result from the SUT (Step 10). The MTC
verifies the number of messages it received from the PTCs
and the file size of the composed dummy image and sets the
test verdict accordingly.

In a next step, the graphical test specification in Fig. 5 can
be either used as specification to develop a TTCN-3 ATS
(and then generate an ETS from it or handcraft an ETS
using the TTCN-3 ATS as specification) or –if a platform
independent ATS is not required– this step can be omitted
and the ETS is immediately implemented manually using
Jata. As we decided against a TTCN-3 execution tool and
instead wanted to evaluate the applicability of Jata, we did
create a TTCN-3 ATS only for comparison purposes.



1 testcase tc applicationManagement() runs on mtcType system
systemType {

2 var ptcType ptc1 := ptcType.create; // Create PTCs
3 var ptcType ptc2 := ptcType.create;
4 map(ptc1:pt system, system:pt PTC1); // PTC−1 <−> SUT
5 connect(self:pt PTC1, ptc1:pt mtc); // PTC−1 <−> MTC
6 map(ptc2:pt system, system:pt PTC2); // PTC−2 <−> SUT
7 connect(self:pt PTC2, ptc2:pt mtc); // PTC−2 <−> MTC
8 map(self:pt system, system:pt http); // MTC <−> SUT
9 ptc1.start(ptcFunc()); // Start PTC functions

10 ptc2.start(ptcFunc());
11 pt system.send(MsgStartRendering(sutIpAddress)); // Stimulus
12 getReceivedJobMessages(); // Wait for all tasks or timeout
13 verifyJobMessages(); // Verify
14 verifyResultsFileSize();
15 setverdict(pass);
16 }

Listing 1: Test case implementation using TTCN-3

1 timer T;
2 var msgReceivedJobType receivedMsg;
3 T.start(2.0);
4 alt {
5 [] pt system.receive(msgReceivedJob) −> value receivedMsg {
6 pt mtc.send(receivedJobsForward(receivedMsg));
7 }
8 [] T.timeout {
9 setverdict(fail);

10 }
11 }

Listing 2: PTC test function using TTCN-3

Listing 1 shows the TTCN-3 test case that executes the
MTC behaviour and it is therefore declared that it runs
on (Line 1) a TC of type mtcType (that contains the ports
used by the MTC) and interfaces to the system under test
via the ports of a component of type systemType. Next,
the two identical PTCs are created (lines 2 and 3) and con-
nected to each other or respectively mapped to the ports
that represent the SUT (lines 4 to 8 – note that slightly dif-
ferent names than in Fig. 4 are used). After this setup of the
test architecture, the two concurrent PTCs are started by
passing as parameter a reference to a TTCN-3 function that
contains the PTC behaviour to be executed (lines 9 and 10).
Then, the ’start rendering job’ stimulus (Step 1 in Fig. 5)
is sent (Line 11). Lines 12 to 14 call MTC behaviour that
waits for job messages which are forwarded by the PTCs and
verifies them subsequently. The called behaviour also sends
an HTTP-request to get the final image composed by the
SUT (Step 10 in Fig. 5) and verifies that it has the correct
size. If any deviations from expected results are detected,
the called behaviour sets the test verdict to fail. Line 15 sets
the verdict to pass: due to the TTCN-3 verdict overwrit-
ing rules, this will not re-set a previously set fail verdict to
pass.

A TTCN-3 snippet of the PTC behaviour is shown in List-
ing 2: first, a timer and a variable for storing a received
message are declared (lines 1 and 2). The timer that is sup-
posed to expire after 2 seconds, is started in Line 3. An
alternative (alt) is used in lines 4 to 11 to wait either for
reception of a job description (Line 5) from the SUT (ac-
cording to steps 2 and 3 in Fig. 5) and forward (Line 6) the
received values to the MTC (according to steps 6 and 8 in
Fig. 5) or to or to catch a timeout (Line 8) of the timer in
case no job description arrives. In this case, the test verdict
is set to fail (Line 9). (Steps 4, 5, 7, and 9 from Fig. 5 are
not reflected in this snippet.)

4.4 Executable Jata Test Case
For obtaining the full ETS, the complete behaviour con-
veyed in the graphical ATS specification was manually im-
plemented in Java using the Jata framework. In addition,
the adaption to the communication mechanisms of the SUT
(including coding/decoding of messages) was realised.

Listing 3 provides an excerpt of the Jata-based implementa-
tion of the MTC behaviour: it matches line by line the cor-
responding TTCN-3 specification in Listing 1 because Jata
(and the underlying Java) supports the used TTCN-3 con-
structs very well. In contrast are TTCN-3 alternatives (as
used in Listing 2): in particular the TTCN-3 syntax does
not blend well with Java, thus TTCN-3 alternatives look
awkward when implementing them using Jata. As shown
in Listing 4 that provides the Jata implementation of the
TTCN-3 specification in Listing 2, alternatives are repre-
sented in Jata as runtime objects (Line 1) to which the al-
ternative branches for receiving a message (Line 4) and for
catching a timeout (Line 5) are added at runtime. Waiting
for one of the alternative branches to occur is triggered in
Line 6. Once one of these alternatives is observed, the corre-
sponding reactions are performed (lines 8 to 15) depending
on the which of the branches occurred (Line 7).

For the adaption layer, we use the open-source libraries
HtmlUnit and Apache HttpClient for the HTML/HTTP-
based communication. To replace the Sunflow renderers by
test stubs, we simply replace the whole OSGi Sunflow worker
service implementation by a test stub that implements the
same Java interface for the worker service. For this, we only

1 protected void Case(Mtc mtc, Sys sys) throws JataException {
2 Ptc ptc1 = createPtc(Ptc.class); // Create PTCs
3 Ptc ptc2 = createPtc(Ptc.class);
4 PipeCenter.Map(ptc1.pt PS, sys.pt PTC1); // PTC−1 <−>

SUT
5 PipeCenter.Map(mtc.pt PTC1, ptc1.pt PM); // PTC−1 <−>

MTC
6 PipeCenter.Map(ptc2.pt PS, sys.pt PTC2); // PTC−2 <−>

SUT
7 PipeCenter.Map(mtc.pt PTC2, ptc2.pt PM); // PTC−2 <−>

MTC
8 PipeCenter.Map(mtc.pt system, sys.pt http); // MTC <−> SUT
9 startPTC(ptc1); // Start PTC functions

10 startPTC(ptc2);
11 mtc.pt system.send(new MsgStartRendering(sutIpAddress)); //

Stimulus
12 getReceivedJobMessages(); // Wait for all tasks or timeout
13 verifyJobMessages(); // Verify
14 verifyResultsFileSize();
15 mtc.Pass(); // VERDICT=PASS
16 }

Listing 3: Test case implementation using Jata

1 Alt alt=new Alt();
2 Timer t=new Timer();
3 t.start();
4 alt.addBranch(ptc.pt system, new MsgReceivedJob());
5 alt.addBranch(t, new SetTimeMessage(2000));
6 alt.proc(); // Process alt statement
7 switch (alt.getResult().index){
8 case 0: // Received expected message
9 // Forward PTC’s incoming parameter message to the MTC

10 MsgReceivedJob msg=(MsgReceivedJob)alt.getResult().Result;
11 ptc.pt MTC.send(msg);
12 break;
13 case 1 : // Time−out
14 ptc.Fail();
15 break;
16 }

Listing 4: PTC test function using Jata



Figure 6: Test execution utility

have to change the OSGi service descriptor file: the SUT is
not aware of that change and when it intends to start and
call a real Sunflow worker on a VM instance that it created,
it does in fact start and call a test stub. This test stub serves
as Jata remote port (see Sect. 2.4) which passes the received
message via Java RMI through to the PTC. Further details
on the Jata test case implementation can be found in the
thesis of Tómasson [16].

4.5 Test Execution
The prerequisites for the test execution are that the SUT has
been configured and started, the scene file to be rendered has
been uploaded, and two worker instances (in fact, the test
stubs) have been added: the latter is typically achieved via
the Turnip web interface.

While the application under test obviously runs in the cloud
environment as well as the test stubs that replace compo-
nents running in the cloud, there are some parts of the test
system that do not necessarily need to run in the cloud en-
vironment, but could be executed locally, such as the MTC
and the Jata test console. However, to avoid any firewall
issues with respect to the Java RMI-based communication
between the the test stubs and PTCs (that run on the same
node as the MTC), we decided to run everything within the
cloud environment. By this means, we avoid to use differ-
ent EC2 firewall settings for testing and for productive use
where any Java RMI messages crossing the cloud boundaries
will anyway be blocked for security reasons.

To cope with the elastic nature of the test environment,
we created a graphical test execution utility that can be
started on a local machine to control (via a Secure Shell
(SSH) connection) the test campaign running in the cloud
environment (Fig. 6): it allows to create an EC2 instance
for the part of the test system that runs the MTC (which
will then create at run-time further PTCs), to create an
EC2 instance that runs the Turnip IUT (request manager
including web interface and application management), to
configure it (upload scene file, add EC2 instances for the
workers containing our test stubs), and to run the Jata test
case and view the test log (Fig. 7). (Start of test execution
without human intervention can be supported by a script.)

Figure 7: Test log

Because the test execution utility created the IUT node,
it knows its IP address dynamically assigned by the cloud
environment and can pass it automatically to the Jata test
case as test case parameter for the target address of the
HTTP requests. Also the test stubs need to know the IP
address of the node that executes the MTC and PTCs to
enable the stubs to forward the intercepted job messages
to that node. The test execution utility automates this as
well, thus avoiding manual test parametrisation each time
the IUT node and MTC node VM instances are (re-)created.

4.6 Discussion
The problems of distributed testing of applications in the
Amazon EC2 cloud environment were successfully solved: a)
We used the productive cloud environment (Amazon EC2)
instead of some artificial (Eucalyptus) to avoid problems
due to different cloud service implementations (which how-
ever increases testing costs due to pay-per-use). b) Firewall
problems were avoided by moving all TCs into the cloud.
(However, that also means that the access to the Web-based
user interface comes from within the cloud – in practise it
would rather come from outside.) c) We avoided license
problems by using the open-source Jata framework instead
of commercial TTCN-3 tools. (However, technical license
problems should be nowadays solvable in cooperation with
a tool vendor.) d) To deal with the elastic nature of a cloud
environment, we created a test execution tool that supports
automated run-time configuration to pass IP addresses that
are subject to change into the test cases as run-time param-
eters without any manual intervention.9

Using the Jata Java test framework to obtain an executable
test suite instead of using a commercial TTCN-3 tool proved
feasible and pleases Java developers who do not need to learn
TTCN-3 syntax and can use the full power of Java. However,
it has to be said that while some part of the resulting test
code resembles one-to-one the comparable TTCN-3 code,
other parts are awkward when Jata is used. In summary, it
can be concluded that Jata is definitely suitable for smaller

9Note that it is nothing new and not unusual to pass in
IP addresses of the test environment as parameters into a
test case. However, in non-elastic environments, the test
environment is set-up once and IP addresses remain fixed
between different test runs and manual configuration of the
test case parameter is economically reasonable.



projects, but we cannot make a reliable statement about
huge, industrial-sized projects where commercial TTCN-3
tools may have their strengths. For example, the scalability
of a test system may be limited: even though Jata supports
remote ports to be distributed to different nodes, the PTCs
to which the remote ports are connected have to run all
on the same node as the MTC. This may overload that
single test node as well as it produces network load for the
communication between remote ports and PTCs.

5. RELATED WORK
To our knowledge, not much work has been published in
the field of distributed testing of cloud applications. Gao
et al. [6] provide an overview on the broader field of testing
and cloud computing. While they point out challenges, these
are high-level and not of technical nature as the challenges
identified by us in Sect. 2.

Chan et al. [3] propose testing criteria for cloud applications.
One criterion relates to testing whether a cloud application
performs correctly after scaling and addresses the problem
that the number of possible scaling paths are potentially
infinite, and thus, it is infeasible to test every configuration.

While Rings et al. [12] mention briefly using TTCN-3 for
conformance testing, they focus on interoperability testing
of grid and cloud infrastructures. Interoperability testing is
different from our CTMF-based testing approach, in partic-
ular such tests are typically conducted manually.

6. SUMMARY AND OUTLOOK
We pointed out challenges in testing applications that run
in an elastic cloud computing environment and provided a
case study to demonstrate how to circumvent these chal-
lenges when conducting distributed testing of a cloud ap-
plication. While we have shown that distributed testing
concepts from the Conformance Testing Methodology and
Framework (CTMF), such as the Multi-party test method,
are applicable as well in cloud environments and firewall is-
sues can be solved, still license management and changing
IP addresses may be a problem in an elastic cloud environ-
ment. An automated run-time configuration that passes IP
addresses of dynamically created Virtual Machine (VM) in-
stances to a test suite solves the latter problem. Also cloud
providers seem to have identified this latter problem and
start to provide solutions such as Amazon’s VPC.

License issues of commercial TTCN-3 execution environ-
ments for distributed testing have been avoided by using
the open-source Java test framework Jata. Experience with
Jata has shown that while it has some idiosyncrasies it is
applicable for implementing and executing distributed tests
based on proven CTMF and TTCN-3 concepts.

Now that Amazon has introduced Elastic Network Inter-
faces, future work seems worthwhile to investigate whether
these can be used to address license management problems
and investigate the applicability of commercial TTCN-3
tools in a cloud environment.

7. ACKNOWLEDGMENTS
This paper is based on experience from earlier work in test-
ing applications in static grid computing environments [13]

by Thomas Rings, Helmut Neukirchen, and Jens Grabowski.
The Turnip cloud application used in this case study was
provided by Ragnar Skúlason [14] who was supervised by
Klaus Marius Hansen and Helmut Neukirchen.

8. REFERENCES
[1] Amazon Web Services LLC. Amazon Elastic Compute

Cloud. http://aws.amazon.com/ec2/, 2013.

[2] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, and
I. Stoica. Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28,
University of California, Berkeley, 2009.

[3] W. Chan, L. Mei, and Z. Zhang. Modeling and
Testing of Cloud Applications. In Services Computing
Conference, 2009. APSCC 2009. IEEE Asia-Pacific.
IEEE, 2009.

[4] ETSI. ETSI Standard (ES) 201 873-1 V4.5.1: The
Testing and Test Control Notation version 3; Parts
1-10. European Telecommunications Standards
Institute (ETSI), Sophia-Antipolis, France, 2013.

[5] Eucalyptus Systems, Inc. Eucalyptus.
http://www.eucalyptus.com, 2013.

[6] J. Gao, X. Bai, and W. T. Tsai. Cloud-Testing- Issues,
Challenges, Needs and Practice. Software Engineering:
An International Journal (SEIJ), 1:9–23, 2011.

[7] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker,
A. Wiles, and C. Willcock. An introduction to the
testing and test control notation (TTCN-3). Comp.
Netw., 42(3):375–403, 2003.

[8] ISO/IEC. Information Technology – Open Systems
Interconnection – Conformance testing methodology
and framework. International ISO/IEC multipart
standard No. 9646, 1994-1997.

[9] Jata. http://code.google.com/p/jata4test/, 2013.

[10] P. Mell and T. Grance. The NIST Definition of Cloud
Computing. National Institute of Standards and
Technology: NIST Special Publication 800-145, 2011.

[11] OSGi Alliance. http://www.osgi.org, 2013.

[12] T. Rings, J. Grabowski, and S. Schulz. A Testing
Framework for Assessing Grid and Cloud
Infrastructure Interoperability. Int. J. On Advances in
Systems and Measurements, 4(1 & 2), 2011.

[13] T. Rings, H. Neukirchen, and J. Grabowski. Testing
Grid Application Workflows Using TTCN-3. In Int.
Conf. on Soft. Testing Verification and Validation
(ICST). IEEE, 2008.

[14] R. Skúlason. Architectural Operations in Cloud
Computing. Master’s thesis, Faculty of Industrial
Engingeering, Mechanical Engineering and Computer
Science, University of Iceland, Reykjav́ık, Iceland,
2011.

[15] Sunflow. http://sunflow.sourceforge.net, 2013.

[16] H. Tómasson. Distributed Testing of Cloud
Applications Using the Jata Test Framework. Master’s
thesis, Faculty of Industrial Engingeering, Mechanical
Engineering and Computer Science, University of
Iceland, Reykjav́ık, Iceland, 2011.

[17] J. Wu, L. Yang, and X. Luo. Jata: A Language for
Distributed Component Testing. In 15th Asia-Pacific
Soft. Eng. Conf. (APSEC 2008). IEEE, 2008.


