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Abstract. Data is often mined using clustering algorithms such as Den-
sity-Based Spatial Clustering of Applications with Noise (DBSCAN).
However, clustering is computationally expensive and thus for big data,
parallel processing is required. The two prevalent paradigms for parallel
processing are High-Performance Computing (HPC) based on Message
Passing Interface (MPI) or Open Multi-Processing (OpenMP) and the
newer big data frameworks such as Apache Spark or Hadoop. This paper
surveys for these two different paradigms publicly available implemen-
tations that aim at parallelizing DBSCAN and compares their perfor-
mance. As a result, it is found that the big data implementations are
not yet mature and in particular for skewed data, the implementation’s
decomposition of the input data into parallel tasks has a huge influence
on the performance in terms of run-time due to load imbalance.

1 Introduction

Computationally intensive problems, such as simulations, require parallel pro-
cessing. Some problems are embarrassingly parallel (such as the many but rather
small problems [1] resulting from the Large Hadron Collider (LHC) experiments)
– most computational problems in simulation are, however, tightly coupled (such
as, e.g., finite element modelling which may even involve model coupling [2]).
The standard approach in this case is High-Performance Computing (HPC).

Highly praised contenders for huge parallel processing problems are big data
processing frameworks such as Apache Hadoop or Apache Spark. Hence, they
might be considered an alternative to HPC for distributed simulations. We have
already shown [3] that for a typical embarrassingly parallel LHC simulation, an
Apache Hadoop-based distributed processing approach is almost on par with the
standard distributed processing approach used at LHC.

In this paper, we want to use a more tightly coupled parallel processing prob-
lem to investigate whether HPC or big data platforms are better suited for com-
putationally intensive problems that involve some tight coupling: clustering using
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [4]
clustering algorithm.
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DBSCAN is computationally expensive and thus for clustering big data, par-
allel processing is required. However, the DBSCAN algorithm has been defined
as a serial, non-parallel algorithm. Hence, several parallel variants of DBSCAN
have been suggested. The main contribution of this paper is to investigate
the run-time performance and scalability of different publicly available paral-
lel DBSCAN implementations running either on HPC platforms or on big data
platforms such as the MapReduce-based Apache Hadoop or the Resilient Dis-
tributed Dataset (RDD)-based Apache Spark.

The Bible’s book of Samuel and chapter 2 of the Qur’an contain the story
of the giant warrior Goliath (Jalut in Arabic): HPC clusters can be considered
as such old giants. The graphical logo of the first popular big data platform,
Apache Hadoop [5], is an elephant. The question whether HPC or big data is
better can therefore be compared to a fight between Goliath and an elephant. –
But beware: later, we encounter even ogres!

The outline of this paper is as follows: subsequent to this introduction, we
provide foundations on DBSCAN, HPC and big data. Afterwards, in Section 3,
we describe as related work other comparison of algorithms running on HPC
and big data platforms as well as a comparison of non-parallel implementations
of DBSCAN. In Section 4, we survey existing DBSCAN implementations. Those
implementations that were publicly available are evaluated with respect to their
run-time in Section 5. We conclude with a summary and an outlook in Section 6.
This full paper is based on an extended abstract [6] and a technical report [7].
An annex with command line details can be found in a EUDAT B2SHARE
persistent electronic record [8].

2 Foundations

2.1 DBSCAN

The spatial clustering algorithm Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [4] has the nice properties that the number of
clusters needs not to be known in advance, but is rather automatically deter-
mined; that it is almost independent from the shape of the clusters; and that it
can deal with and filter out noise. Basically, the underlying idea is that for each
data point, the neighbourhood within a given eps radius has to contain at least
minpts points to form a cluster, otherwise it is considered as noise.

In the simplest implementation, finding all points which are in the eps neigh-
bourhood of the currently considered point, requires to check all remaining n−1
points of the input data: doing this for each of the n input points leads to a com-
plexity of O(n2). Using spatially sorted data structures for the eps neighbour-
hood search, such as R-trees [9], R*-trees [10], or kd-trees [11], reduces the overall
complexity to O(n log n) if eps is reasonably small1. The standard algorithms to

1 If the eps neighbourhood contains, e.g., all data points, the complexity of DBSCAN
grows obviously again to O(n2) despite these tree-based approaches.
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populate such spatially sorted data structures cannot run in parallel and require
in particular to have the entire input data available in non-distributed memory.

Even if the problem of having a distributed, parallel-processing variant of
populating and using a spatially sorted data structure (in order to bring the
overall complexity down to O(n log n)) is solved, there are further obstacles in
parallelizing DBSCAN in a way that it scales optimally.

The actual clustering can be easily parallelized by partitioning the data spa-
tially: typically, all points that belong to the same partition or cell (=a rectangle
in case of 2 dimensional data, a cube in case of 3D data, or a hypercube for n≥3
dimensions) can be processed by one thread independently from other threads
that process the remaining partitions of points. Only at the border of each rectan-
gle/cube/hypercube, points from direct neighbour rectangles/cubes/hypercubes
need to be considered up to a distance of eps. For this, the standard approach
of ghost or halo regions [12] can be applied, meaning that these points from a
neighbour partition need to be accessible as well by the current thread (in case
of distributed memory, this requires to copy them into the memory of the respec-
tive thread). In a final step, those clusters determined locally in each partition
which form a bigger cluster spanning multiple partitions need to be merged.

To achieve a maximum speed-up, not only an efficient spatially sorted data
structure and low communication overhead (e.g. for halo regions or finally merg-
ing locally obtained clusters), but also the size of the partitions is crucial: the
input domain needs to be decomposed so that each thread or processor core get
an equal share of the work. The simple approach of dividing the input domain
into spatially equally sized chunks (for example as many chunks as processor
cores are available) yields imbalanced workloads for the different cores if the
input data is skewed: some partitions may then be almost empty, others very
crowded. For heavily skewed data, the spatial size of each partition needs to
be rather adjusted, for example in a way that each partition contains an equal
number of points or the same number of comparisons are performed in each
partition. If ghost/halo regions are used, then also the number of points in these
regions need to be considered, because they also need to be compared by a thread
processing that partition.

As shown, parallelizing DBSCAN in a scalable way beyond a trivial number of
parallel threads (or processing nodes respectively) or problem size is a challenge.
For example, PDBSCAN [13] is a parallelized DBSCAN, however it involves a
central master node to aggregate intermediate results which can be a bottleneck
with respect to scalability. In particular, when processing “big data” (i.e. n is
huge), the implementation with the standard complexity of O(n2) will be too
slow and rather O(n log n) algorithms are needed.

2.2 HPC

High-Performance Computing (HPC) is tailored to CPU-bound problems. Hence,
special and rather expensive hardware is used, e.g. compute nodes containing fast
CPUs including many cores and large amounts of RAM, very fast interconnects
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(e.g. InfiniBand) for communication between nodes, and a centralised Storage-
Area Network (SAN) with high bandwith due to a huge Redundant Array of
Independent Disks (RAID) and fast attachment of them to the nodes.

To make use of the multiple cores per CPU, typically shared-memory multi-
threading based on Open Multi-Processing (OpenMP) [14] is applied. To make
use of the many nodes connected via the interconnects, an implementation of
the Message Passing Interface (MPI) [15] is used. The underlying programming
model (in particular of MPI) is rather low-level: the domain decomposition of
the input data, all parallel processing, the synchronisation and communication
needed for tight coupling has to be explicitly programmed. Typically rather low-
level, but fast programming languages such as C, C++ and Fortran are used in
the HPC domain. In addition to message passing, MPI supports parallel I/O to
read different file sections from the SAN in parallel into the different nodes. To
this aim, parallel file systems such as Lustre [16] or the General Parallel File
System (GPFS) [17] provide a high aggregated storage bandwidth. Typically,
binary file formats such as netCDF or the Hierarchical Data Format (HDF) [18]
are used for storing input and output data in a structured way. They come with
access libraries that are tailored to MPI parallel I/O.

While the low-level approach allows fast and tightly coupled implementa-
tions, their implementation takes considerable time. Furthermore, no fault tol-
erance is included: a single failure on one of the many cores will cause the whole
HPC job to fail which then needs to be restarted from the beginning if no check-
pointing has been implemented. However, due to the server-grade hardware,
hardware failures are considered to occur seldom (but still, they occur).

2.3 Big Data

The big data paradigm is tailored to process huge amounts of data, however
the actual computations to be performed on this data are often not that com-
putationally intensive. Hence, cheap commodity hardware is sufficient for most
applications. Being rather I/O-bound than CPU-bound, the focus is on High-
Throughput Computing (HTC). To achieve high-throughput, locality of data
storage is exploited by using distributed file systems storing locally on each node
a part of the data. The big data approach aims at doing computations on those
nodes where the data is locally available. By this means, slow network commu-
nication can be minimised. (Which is crucial, because rather slow Ethernet is
used in comparison to the fast interconnects in HPC.)

An example distributed file system is the Hadoop Distributed File System
(HDFS), introduced with one of the first open-source big data frameworks,
Apache Hadoop [5] which is based on the MapReduce paradigm [19]. As it is
intended for huge amounts of data, the typical block size is 64 MB or 128 MB.
Hadoop has the disadvantage that only the MapReduce paradigm is supported
which restricts the possible class of parallel algorithms and in particular may
lead to unnecessarily storing intermediate data on disk instead of allowing to
keep it in fast RAM. This weakness is overcome by Apache Spark [20] which is
based on Resilient Distributed Datasets (RDDs) [21] which are able to store a
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whole data set in RAM distributed in partitions over the nodes of a cluster. A
new RDD can be obtained by applying transformations in parallel on all input
RDD partitions. To achieve fault tolerance, an RDD can be reconstructed by
re-playing transformations on those input RDDs partitions that survived a fail-
ure. The initial RDD is obtained by reads from HDFS. While RDDs are kept
in RAM, required data may not be available locally in the RDD partition of
a node. In this case, it is necessary to re-distribute data between nodes. Such
shuffle operations are expensive, because slow network transfers are needed for
them. Typically, textual file formats, such as Comma-Separated Values (CSV)
are used that can be easily split to form the partitions on the different nodes.

High-level, but (in comparison to C/C++ or Fortran) slower languages such
as Java or the even more high-level Scala or Python are used in big data frame-
works. Scala has over Python the advantage that it is compiled into Java byte-
code and is thus natively executed by the Java Virtual Machine (JVM) running
the Hadoop and Spark frameworks. While the code to be executed is written
as a serial code, the big data frameworks take behind the scenes care that each
node applies in parallel the same code to the different partitions of the data.

Because commodity hardware is used which is more error prone than HPC
server-grade hardware, big data approaches need to anticipate failures as the
norm and have thus built-in fault tolerance, such as redundant data storage or
restarting failed jobs.

2.4 Convergence of HPC and Big Data

Convergence of HPC and big data approaches is taking place in both directions:
typically either in form of High-Performance Data Analysis (HPDA), meaning
that HPC is used in domains that used to be the realm of big data platforms,
or big data platforms are used in the realm of HPC. Alternatively, a mixture is
possible: big data platforms are deployed on HPC clusters, however, sacrificing
data locality-aware scheduling [22]. In this paper, we investigate how mature
this convergence is by comparing DBSCAN clustering implementations for HPC
and for big data platforms.

3 Related Work

HPC and big data data implementations for the same algorithms have been
studied before. Jha et al. [22] compare these two parallel processing paradigms
in general and introduce “Big Data Ogres” which refer to different computing
problem areas with clustering being one of them. In particular, they evaluate
and compare the performance of k-means clustering [23] implementations for
MPI-based HPC, for MapReduce-based big data platforms such as Hadoop and
HARP (which introduces MPI-like operations into Hadoop), and for the RDD-
based Spark big data platform. In their evaluation, the considered HPC MPI
k-means implementation outperforms the other more big data-related imple-
mentation with the implementation based on HARP being second fastest and
the implementation for Spark ranking third.
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A further performance comparison of a big data implementation and a tradi-
tional parallel implementation has been done by us [3] with respect to a typical
embarrassingly parallel High Energy Physics analysis: as traditional embarrass-
ingly parallel execution platform, the Parallel ROOT Facility (PROOF) [24] has
been compared to using Apache Hadoop for this analysis: while the Hadoop-
based implementation is slightly slower, it offers fault tolerance.

The influence of data storage locality as exploited by Spark and other big
data platforms compared to centralized HPC SAN storage has been investigated
by Wang et al. [25]. They use data intensive Grep search and compute intensive
logistic regression as case study and come to the conclusion that even with a
fast 47 GB/s bandwith centralized Lustre SAN, data locality matters for Grep
and thus accesses to local SSDs are faster. However, for the logistic regression,
locality of I/O does not matter.

Kriegel et al. [26] stresses the scientific value of benchmarking and evaluates
in particular the run-time of serial, non-parallel implementations of DBSCAN.
Concerning different programming languages, they show that a C++ implemen-
tation is one order of magnitude faster than a comparable Java implementation.
They also observed a four orders of magnitude speed difference between different
serial implementations of DBSCAN.

4 Survey of Parallel DBSCAN Implementations

This section contains a survey of the considered DBSCAN implementations. To
be able to compare their run-time performance on the same hardware and using
the same input, only open-source implementations have been considered.

For comparison, we also used also ELKI 0.7.1 [27], an Environment for
DeveLoping KDD-Applications supported by Index-Structures. ELKI is an op-
timised serial open-source DBSCAN implementation in Java which employs
R*-trees to achieve O(n log n) performance. By default, ELKI reads space- or
comma-separated values and it supports arbitrary dimensions of the input data.

4.1 HPC DBSCAN Implementations

A couple of DBSCAN implementations for HPC platforms exist (as, for example,
listed by Patwaryat et al. [28] or Götz et al. [29]). To our knowledge, only for
two of them, the source is available: PDSDBSCAN and HPDBSCAN. Thus, we
restrict in the following to these two. Both support arbitrary data dimensions.

PDSDBSCAN by Patwary et al. [28] (C++ source code available on request
from the PDSDBSCAN first author [30]) makes use of parallelization either based
on shared memory using OpenMP or based on distributed memory using MPI.
For their OpenMP variant, the the input data needs to fit into the available
RAM; for the MPI variant, a pre-processing step is required to partition the
input data onto the distributed memory. Details of this pre-processing step are
not documented as the authors do not consider this step as part of their algorithm
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and thus, it is neither parallelized nor taken into account when they measure
their running times. Input data is read via the netCDF I/O library.

HPDBSCAN by Götz et al. [29] (C++ source code available from repos-
itory [31]) makes use of parallelization based on shared memory and/or dis-
tributed memory: besides a pure OpenMP and pure MPI mode, also a hybrid
mode is supported. This is practically relevant, because an HPC cluster is a com-
bination of both memory types (each node has RAM shared by multiple cores
of the same node, but RAM is not shared between the many distributed nodes)
and thus, a hybrid mode is most promising to achieve high performance. For
the domain decomposition and to obtain a spatially sorted data structure with
O(log n) access complexity, the arbitrary ordered input data is first indexed in
a parallel way and then re-distributed so that each parallel processor has points
in the local memory which belong to the same spatial partition. It is the only
implementation that sizes the partitions using a cost function that is based on
the number of comparisons (=number of pairs for which the distance function
needs to be calculated) to be made for the resulting partition size: this obviously
also includes points in adjacent ghost/halo regions. The command line version
of the implementation reads the input data via the HDF I/O library.

4.2 Spark DBSCAN Implementations

Even though our search for Apache Spark big data implementations of DBSCAN2

was restricted to JVM-based Java or Scala3 candidates, we found several parallel
open-source4 implementations of DBSCAN: Spark DBSCAN, RDD-DBSCAN,
Spark DBSCAN, and DBSCAN On Spark. They are described in the following.

Spark DBSCAN by Litouka (source code via repository [35]) is declared as
experimental and being not well optimised. For the domain decomposition, the
data set is considered initially as a large box full of points. This box is then
along its longest dimension split into two parts containing approximately the
same number of points. Each of these boxes is then split again recursively until
the number of points in a box becomes less than or equal to a threshold, or a
maximum number of levels is reached, or the shortest side of a box becomes

2 Remarkably, the machine learning library MLlib which is a part of Apache Spark
does not contain DBSCAN implementations.

3 Note that also purely serial Scala implementations of DBSCAN are available, for
example GSBSCAN from the Nak machine learning library [32]. However, these
obviously make not use of Apache Spark parallel processing. But still, they can
be used from within Apache Spark code to call these implementations in parallel,
however each does then cluster unrelated data sets [33].

4 There is another promising DBSCAN implementation for Spark by Han et al. [34]:
A kd-tree is used to obtain O(n logn) complexity. Concerning the partitioning, the
authors state “We did not partition data points based on the neighborhood rela-
tionship in our work and that might cause workload to be unbalanced. So, in the
future, we will consider partitioning the input data points before they are assigned
to executors.” [34]. However, it was not possible to benchmark it as is not available
as open-source.



8 Helmut Neukirchen

smaller than 2 eps [35]. Each such a box becomes a record of an RDD which
can be processed in parallel, thus yielding a time complexity of O(m2) for that
parallel processing step with m being the number of points per box [36].

RDD-DBSCAN by Cordova and Moh [37] (source code via repository [38])
is loosely based on MR-DBSCAN [39]. Just as the above Spark DBSCAN by
Litouka, the data space is split into boxes that contain roughly the same amount
of data points until the number of points in a box becomes less than a threshold
or the shortest side of a box becomes smaller than 2 eps. R-trees are used to
achieve an overall O(n log n) complexity [37].

Spark DBSCAN (source code via repository [40]) is a very simple implemen-
tation (just 98 lines of Scala code) and was not considered any further, because
of its complexity being O(n2) [36].

DBSCAN On Spark by Raad (source code via repository [41]) uses for domain
decomposition a fixed grid independent from how many points are contained in
each resulting grid cell. Furthermore, to reduce the complexity, no Euclidian
distance function is used (which would be a circle with 2 eps diameter), but
the square box grid cells (with 2 eps edge length) themselves are rather used
to decide concerning neighbourhood (see function findNeighbors in [41]). So,
while it is called “DBSCAN On Spark” it implements only an approximation of
the DBSCAN algorithm and does in fact return wrong clustering results.

Common features and limitations of the Spark Implementations All
the considered implementations of DBSCAN for big data platforms assume the
data to be in CSV or space-separated format.

All the Apache Spark DBSCAN implementations (except for the closed-
source DBSCAN by Han et al. [34]) work only on 2D data: On the one hand, the
partitioning schemes used for decomposition are based on rectangles instead of
higher-dimensional hyper-cubes. On the other hand, for calculating the distance
between points, most implementations use a hard-coded 2D-only implementation
of calculating the Euclidian distance5.

Most Spark-based implementations aim at load balancing by having an ap-
proximately equal number of data points in each partition and a partition may
not get smaller than 2 eps.

4.3 MapReduce DBSCAN Implementations

For further comparison, it would have been interesting to evaluate in addition
also MapReduce-based DBSCAN implementations for the Apache Hadoop plat-
form; candidates found to be worthwhile (because they claim to be able to
deal with skewed data) were MR-DBSCAN [42, 39] by He et al. and DBSCAN-
MR [43] by Dai and Lin. However, none of these implementations were available

5 Note that spheric distances of longitude/latitude points should in general not be
calculated using Euclidian distance in the plane. However, as long as these points
are sufficiently close together, clustering based on the simpler and faster to calculate
Euclidian distance is considered as appropriate.
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as open-source and e-mail requests to the respective first authors to provide their
implementations either as source code or as binary were not answered. Hence,
it is impossible to validate the performance claims made by these authors.

5 Evaluation of Parallel DBSCAN Implementations

Typically, comparisons between HPC and big data implementations are difficult
as the implementations run on different cluster hardware (HPC hardware versus
commodity hardware) or cannot exploit underlying assumptions (such as missing
local data storage when deploying big data frameworks at run-time on HPC
clusters using a SAN).

5.1 Hardware and Software Configuration

In this paper, the same hardware is used for HPC and Spark runs: the clus-
ter JUDGE at Jülich Supercomputing Centre. JUDGE was formerly used for
HPC and has been turned into a big data cluster. It consists of IBM System x
iDataPlex dx360 M3 compute nodes each comprising two Intel Xeon X5650
(Westmere) 6-core processors running at 2.66 GHz. For the big data evaluation,
we were able to use 39 executor nodes, each having 12 cores or 24 virtual cores
with hyper-threading enabled (=936 virtual cores) and 42 GB of usable RAM
per node and local hard disk.

In the HPC configuration, a network-attached GPFS storage system, the
JUelich STorage cluster JUST, was used to access data (measured peak per-
formance of 160 GB/s), and the CPU nodes were connected via an Infiniband
interconnect. The big data configuration relies on local storage provided on each
node by a Western Digital WD2502ABYS-23B7A hard disk (with peak perfor-
mance of 222.9 MB/s per disk, corresponding to 8.7 GB/s total bandwidth if all
39 nodes read their local disk in parallel). 200 GB on each disk were dedicated
to HDFS using a replication factor of 2 and 128 MB HDFS block size. The CPU
nodes were connected via Ethernet network connections.

The software setup in the HPC configuration was SUSE Linux SLES 11
with kernel version 2.6.32.59-0.7. The MPI distribution was MPICH2 in version
1.2.1p1. For accessing HDF5 files, the HDF group’s reference implementation
version 1.8.14 was used. The compiler was gcc 4.9.2 using optimisation level O3.

The big data software configuration was deployed using the Cloudera CDH
5.8.0 distribution providing Apache Spark version 1.6.0 and Apache Hadoop
(including HDFS and YARN which was used as resource manager) version 2.6.0
running on a 64-Bit Java 1.7.0 67 VM. The operating system was CentOS Linux
release 7.2.1511.

5.2 Input Data

Instead of using artificial data, a real data set containing skewed data was used
for evaluating the DBSCAN implementations: geo-tagged tweets from a rect-
angle around the United Kingdom and Ireland (including a corner of France)
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Table 1. Size of the Used Twitter Data Sets

Data points HDF5 size CSV size SSV with Ids

Twitter Small 3 704 351 57 MB 67 MB 88 MB
Twitter Big 16 602 137 254 MB 289 MB 390 MB

Table 2. Used Open Source Repository Versions

Implementation Repository Version date

HPDBSCAN bitbucket.org/markus.goetz/hpdbscan 2015-09-10
Spark DBSCAN github.com/alitouka/spark_dbscan 22 Feb 2015
RDD DBSCAN github.com/irvingc/dbscan-on-spark 14 Jun 2016
DBSCAN on Spark github.com/mraad/dbscan-spark 30 Jan 2016

in the first week of June 2014. The data was obtained by Junjun Yin from
the National Center for Supercomputing Application (NCSA) using the Twitter
streaming API. This data set contains 3 704 351 longitude/latitude points and
is available at the scientific data storage and sharing platform B2SHARE [44].
There, the data is contained in file twitterSmall.h5.h5. A bigger Twitter data
set twitter.h5.h5 from the same B2SHARE location covers whole of June 2014
containing of 16 602 137 data points, some of them are bogus artefacts though
(Twitter spam) – still we used it to check whether implementations are able to
cope with bigger data sets; a 3D point cloud data set for the city of Bremen is
also provided there, however it was not usable for benchmarking the surveyed
DBSCAN implementations for Spark which typically support only 2D data.

The original file of the small Twitter data set is in HDF5 format and 57 MB
in size. To be readable by ELKI and the Spark DBSCAN implementations, it
has been converted using the h5dump tool (available from the HDF group) into
a 67 MB CSV version and into an 88 MB Space-Separated Values (SSV) version
that contains in the first column an increasing integer number as point identifier
(expected by some of the evaluated DBSCAN implementations). The size of
these two data sets is summarised in Table 1.

For all runs, eps = 0.01 and minpts = 40 were used as parameters of
DBSCAN. The detailed command line parameters can be found in EUDAT [8].

5.3 DBSCAN Implementation Versions

The dates of the used DBSCAN implementation source code versions and their
repository are provided in Table 2. The source code was used unmodified except
for one change: by default, Spark makes each HDFS block of the input file a
separate partition of the input RDD. With the above file sizes of the small
Twitter data set being lower than the used HDFS block size of 128 MB, the
initial RDD would contain just a single partition located on the node storing the
corresponding HDFS block. In this case, no parallelism would be used to process
the initial RDD. Therefore, if the Spark DBSCAN implementations did not
anyway allow to specify the number of partitions to be used, the implementations
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Table 3. Deviation of RDD-DBSCAN Run-times for the Same Configuration

Run 1. 2. 3. 4.

Time (s) 653 546 553 560

were changed so that it is possible to specify the number of partitions to be used
for the initial file read. While this means that non-local reads will occur, the
overhead of these non-local reads is negligible in particular since it leads to a
better degree of parallel processing.

5.4 Measurements

Comparing C++ implementations (PDSDBSCAN and HPDBSCAN) to JVM-
based DBSCAN implementations for Spark is somewhat comparing apples and
oranges. Hence, we used as a further comparison a Java implementation, the
pure serial ELKI (see section 4) with -db.index "tree.metrical.covertree.

SimplifiedCoverTree$Factory" spatial indexing option running just on one of
the cluster cores. The times were measured using the POSIX command time.

As usual in Spark, the Spark DBSCAN implementations create the output in
parallel resulting in one file per parallel RDD output partition. If a single output
file is intended, it can be merged afterwards, however this time is not included
in the measurement. The reported times were taken from the “Elapsed” line of
the application’s entry in the Spark web user interface for the completed run.

For the number of experiments that we did, we could not afford to re-run all
of them multiple times to obtain averages or medians. However, for one scenario
(RDD-DBSCAN, 233 executors, each using 4 cores with 912 initial partitions
running on the small Twitter data set), we repeated execution four times. The
observed run-times are shown in Table 3. For these 9–10 minute jobs, deviations
of up to almost 2 minutes occurred. The fact that the first run was slower than
the subsequent runs might be attributed to caching of the input file. In all of
our experiments, we had exclusive use of the assigned cores.

Preparatory Measurements In addition to the DBSCAN parameters eps and
minpts, the parallel Spark-based implementations are influenced by a couple of
parallelism parameters which were determined first as described below.

Spark uses the concepts of executors with a certain number of threads per
executor process. A couple of sample measurements using a number of threads
per executor ranging from 3 to 22 have been performed and the results rang-
ing from 626 seconds to 775 seconds are within the above deviations, hence the
influence of threads per executor is not considered significant. (Most of the fol-
lowing measurements have been made with 8 threads per executor – details can
be found in EUDAT [8].)

Parallelism in Spark is influenced by the number of partitions into which
an RDD is divided. Therefore, measurements with varying initial partition sizes
have been made (in subsequent RDD transformations, the number of partitions
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Table 4. Influence of number of points used in domain decomposition

No. of points threshold 4 061 9 000 20 000 25 000 50 000

Times (s) 1 157 823 867 675 846

may however change depending on the DBSCAN implementations). Measure-
ment for RDD-DBSCAN running on the small Twitter data set on the 932 core
cluster (not all cores were assigned to executors to leave cores available for cluster
management) have been made for a number of initial number of input partitions
ranging from 28 to 912. The observed run-times were between 622 seconds and
736 seconds which are all within the above deviation range. Hence, these experi-
ments do not give observable evidence of an optimal number of input partitions.
However, in the remainder, it is assumed that making use of the available cores
already from the beginning is optimal and hence 912 was used as the initial
number of input partitions.

After the input data has been read, the DBSCAN implementations aim at
distributing the read data points based on spatial locality: as described in sec-
tion 4.2, most Spark DBSCAN implementations aim at recursively decomposing
the input domain into spatial rectangles that contain approximately an equal
number of data points and they stop doing so as soon as a rectangle contains
only a certain number of points; however, a rectangle becomes never smaller than
2 eps edge length. Assuming that the subsequent clustering steps are also based
on 912 partitions, the 3 704 351 points of the small Twitter data set divided by
912 partitions yield 4061 points per partition as a decomposition into an equal
number of points. However, due to the fact a rectangle becomes never smaller
than 2 eps edge length, some rectangles of that size still contain more points (e.g.
in the dense-populated London area, some of these 2 eps rectangle contain up to
25 000 data points) and thus, the domain decomposition algorithm terminates
with some rectangles containing a rather high number of points.

Experiments have been made with different numbers of points used as thresh-
old for the domain decomposition by the Spark-based implementations. As shown
in Table 4, a threshold of a minimum of 25 000 data points per rectangle promises
fastest execution. This number is also the lowest number that avoids the domain
decomposition to terminate splitting rectangles because of reaching the 2 eps
edge length limit: a näıve explanation would be that all rectangles contain an
approximately equal number of points thus leading to load balancing. However,
later findings (Section 5.5) show a significant load imbalance.

Run-time Measurements on Small Data Set After the above parameters
have been determined, a comparison of the run-times of the different implemen-
tations was made when clustering the small Twitter data set while increasing
the number of cores and keeping the problem size fixed (“strong scaling”).

Table 5 shows results using a lower number of cores in parallel. The C++
implementation HPDBSCAN (running in MPI only mode) performs best in all
cases and scales well: even with just one core, only 114 seconds are needed to
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Table 5. Run-time (in Seconds) on Small Twitter Data Set vs. Number of Cores

Number of cores 1 2 4 8 16 32

HPDBSCAN MPI 114 59 30 16 8 6
PDSDBSCAN MPI 288 162 106 90 85 88

ELKI 997 – – – – –
RDD-DBSCAN 7 311 3 521 1 994 1 219 889 832

DBSCAN on Spark(*) 1 105 574 330 174 150 147

(*) Does only implement an approximation of the DBSCAN algorithm.

Table 6. Run-time (in Seconds) on Small Twitter Data Set vs. Number of Cores

Number of cores 58 116 232 464 928

Spark DBSCAN – – – – 2 406
RDD-DBSCAN 622 707 663 624 675

DBSCAN on Spark(*) 169 167 173 183 208

(*) Does only implement an approximation of the DBSCAN algorithm.

cluster the small Twitter data set. Second in terms of run-time is C++ PDSDB-
SCAN (MPI variant), however, the scalability beyond 8 cores is already limited.

Even though the Java ELKI is optimised for serial execution, it is much
slower than the parallel C++ implementations using a single core only. All im-
plementations for Spark are much slower when using a single core only. (Spark
DBSCAN was not measured using a low number of cores, because already with a
high number of cores it was very slow.) When running on many cores, the Spark-
based implementations beat the serial ELKI but are still by one (DBSCAN on
Spark) or two (RDD-DBSCAN) orders of magnitude slower than HPDBSCAN
and do not scale as well. While DBSCAN on Spark is faster than RDD-DBSCAN,
it does only implement a simple approximation of DBSCAN and thus delivers
completely different (=wrong) clusters than correct DBSCAN implementations.

Table 6 shows results using a higher number of cores. (No measurements of
any of the two DBSCAN HPC implementations on the small Twitter data set
have been made, as we can already see from Table 5 that using a higher number
of cores does not give any gains on this small data set – measurements with
many cores for HPDBSCAN running on the bigger Twitter data set are pre-
sented later). For Spark DBSCAN, an initial experiment has been made using
928 cores, but as it was rather slow, so no further experiments have been made
for this implementation. For RDD-DBSCAN, no real speed-up can be observed
when scaling the number of cores (run-times are more or less independent from
the number of used cores and constant when taking into account the measure-
ment deviations to be expected). The same applies to the DBSCAN on Spark
implementation.

As pointed out in Section 4.3, it would have been interesting to compare
the running time of MapReduce-based implementations using the same data
set and hardware. Han et al. [34] who tried as well without success to get the
implementations of MR-DBSCAN and DBSCAN-MR, developed for comparison
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Table 7. Run-time (in Seconds) on Big Twitter Data Set vs. Number of Cores

Number of cores 1 384 768 928

HPBDBSCAN hybrid 2 079 10 8 –
ELKI 15 362 – – –

Spark DBSCAN – – – Exception
RDD-DBSCAN – – – 5 335

DBSCAN on Spark(*) – – – 1 491

(*) Does only implement an approximation the DBSCAN algorithm.

reasons their own MapReduce-based implementation and observed a 9 to 16
times slower performance of their MapReduce-based DBSCAN implementation
in comparison to their implementation for Spark.

Run-time Measurements on Big Data Set While the previous measure-
ments were made using the smaller Twitter data set, also the bigger one con-
taining 16 602 137 points was used in experiments in order to investigate some
sort of “weak scaling”. While HPDBSCAN can easily handle it, the Spark im-
plementations have problems with this 289 MB CSV file.

When running any of the Spark DBSCAN implementations while making use
of all available cores of our cluster, we experienced out-of-memory exceptions6.
Even though each node in our cluster has 42 GB RAM, this memory is shared
by 24 virtual cores of that node. Hence, the number of cores used on each node
had to be restricted using the --executor-cores parameter, thus reducing the
parallelism, but leaving each thread more RAM (which was adjusted using the
--executor-memory parameter).

The results for the big Twitter data set are provided in Table 7. HPDB-
SCAN (in the hybrid version using OpenMP within each node and MPI between
nodes) scales well. Spark DBSCAN failed throwing the exception java.lang.

Exception: Box for point Point at (51.382, -2.3846); id = 6618196;

box = 706; cluster = -2; neighbors = 0 was not found. DBSCAN on
Spark did not crash, but returned completely wrong clusters (it anyway does not
cluster according to the original DBSCAN idea). RDD-DBSCAN took almost
one and a half hour. Due to the long run-times of the DBSCAN implementa-
tions for Spark already with the maximum number of cores, we did not perform
measurements with a lower number of cores.

5.5 Discussion of Results

Big data approaches aim at avoiding “expensive” network transfer of initial in-
put data by moving computation where the data is available on local storage. In
contrast, in HPC systems, the initial input data is not available locally, but via

6 Despite these exceptions, we did only encounter once during all measurements a
re-submissions of a failed Spark tasks – in this case, we did re-run the job to obtain
a measurement comparable to the other, non failing, executions.
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an external SAN storage system. Due to the fact that big data approaches aim
at minimising network transfers, the fact that the Infiniband interconnection of
CPU nodes used in the HPC configuration is faster than the Ethernet-based big
data configuration, should not matter that much. In addition, because DBSCAN
is not that I/O bound, but rather CPU bound, the I/O speed and file formats do
not matter as much as the used programming languages and clever implementa-
tions in particular with respect to the quality of the domain decomposition for
an effective load balancing of parallel execution.

HPDBSCAN outperforms all other considered implementations. Even the
optimised serial ELKI is slower than a serial run of HPDBSCAN. This can
attributed to C++ code being faster than Java and to the fact that HPDBSCAN
uses the fast binary HDF5 file format, whereas all other implementations have to
read and parse a textual input file (and respectively create and write a textual
output file). Having a closer look at the scalability reveals furthermore that
HPDBSCAN scales (“strong scaling”) for the small data set very well up to 16
cores, but some saturation becomes visible with 32 cores (Table 5): Amdahl’s
law [45] suggests that sequential parts and overheads start then to dominate.

For the given skewed data set, scalability of RDD-DBSCAN is only given
for a low number of cores (the run-time difference between 16 and 32 cores is
within to be expected measurement deviations), but not beyond7. An analysis
of the run-time behaviour reveals that in the middle of execution, only one long
running task of RDD-DBSCAN is being executed by Spark: while one core is busy
with this task, all other cores are idle and the subsequent RDD transformations
cannot yet be started as they rely on the long running task. This means, the load
is due to bad domain decomposition not well balanced and explains why RDD-
DBSCAN does not scale beyond 58 cores: adding more cores just means adding
more idle cores (while one core executes the long running task, the remaining
57 cores are enough to handle the workload of all the other parallel tasks). In
fact, the serial ELKI using just one core is faster than RDD-DBSCAN using
up to 8 cores and even beyond, RDD-DBSCAN is not that much faster and
which does not really justify using a high number of cores. DBSCAN on Spark
delivers completely wrong clusters, hence it has to be considered useless and it
is pointless that it is faster than RDD-DBSCAN.

The comparison between HPDBSCAN and the Spark-based implementations
shows that HPDBSCAN does a much better load balancing: the Spark-based im-
plementations typically try to balance the number of points per partition before
enlarging the partitions by eps on each side to add the ghost/halo regions which
adds further extra points (which can be a significant amount in dense areas).
Also, partitions cannot get smaller than 2 eps. In contrast, HPDBSCAN balances
the number of comparisons to be performed (i.e. calculating the Euclidean dis-
tance) and takes to this aim also comparisons of points inside the partition with
points in the ghost/halo regions of that partition into account. Furthermore,
partitions can get smaller than 2 eps which is also important to balance heav-

7 Remarkably, the authors of RDD-DBSCAN [37] performed scalability studies only
up to 10 cores.
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ily skewed data. As a result, HPDBSCAN is able to balance the computational
costs much better in particular for skewed data.

While the HPC implementations are much faster than the big data imple-
mentations, it is at least in favour of the big data implementations that HPC
implementations require much more lines of code (=more development efforts)
than the more abstract Scala implementations for Spark. Also, the big data
platforms provide fault tolerance which is not given on HPC platforms.

6 Summary and Outlook

We surveyed existing parallel implementations of the spatial clustering algorithm
DBSCAN for High-Performance Computing (HPC) platforms and big data plat-
forms, namely Apache Hadoop and Apache Spark. For those implementations
that were available as open-source, we evaluated and compared their perfor-
mance in terms of run-time. The result is devastating: none of the evaluated
implementations for Apache Spark is anywhere near to the HPC implementa-
tions. In particular on bigger (but still rather small) data sets, most of them fail
completely and do not even deliver correct results.

As typical HPC hardware is much more expensive than commodity hard-
ware used in most big data applications, one might be tempted to say that it is
obvious that the HPC DBSCAN implementations are faster than all the evalu-
ated Spark DBSCAN implementations. Therefore, in this case study, the same
hardware was used for both platforms: HPC hardware. – But using commodity
hardware instead would not change the result: while the HPC implementations
of DBSCAN would then not benefit from the fast HPC I/O, a closer analy-
sis reveals that typical big data considerations such as locality of data are not
relevant in this case study, but rather proper parallelization such as decompo-
sition into load balanced parallel tasks matters. The Spark implementations of
DBSCAN suffer from a unsuitable decomposition of the input data. Hence, the
used skewed input data leads to tasks with extremely imbalanced load on the
different parallel cores.

It can be speculated that in HPC, parallelization needs to manually im-
plemented and thus gets more attention in contrast to the high-level big data
approaches where the developer gets not in touch with parallelization. Another
reason to prefer HPC for compute-intensive tasks is that already based on the
used programming languages, run-time performance of the JVM-based Spark
platform can be expected to be one order of magnitude slower than C/C++.
While RDDs support a bigger class of non-embarrassingly parallel problems
than MapReduce, Spark still does not support as tight coupling as OpenMP
and MPI used in HPC which might however be required for, e.g., simulations.

To conclude our story of Goliath and the elephant: if you do not even get the
parallelization and load balancing right, it does matter whether you are Goliath
or an elephant. Or – looking at it the other way around – if you want to take for
your big data a fast DBSCAN algorithm off-the-shelf, you are currently better
off if you take HPDBSCAN [29].
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However, it has to be said that in general, the big data platforms such as
Apache Spark offer resilience (such as re-starting crashed sub-tasks) and a higher
level of abstraction (reducing time spent implementing an algorithm) in com-
parison to the low-level HPC approach.

As future work, it would be interesting to investigate the performance of
the different implementations on other data sets – e.g. for non-skewed data,
the load imbalance can be expected to disappear; but still, the C/C++ HPC
implementations can be expected to be faster than the Java big data implemen-
tation. Furthermore, it is worthwhile to transfer the parallelization concepts of
HPDBSCAN to a Spark implementation, in particular the domain decomposi-
tion below rectangles/hypercubes smaller than 2 eps and the load balancing cost
function of considering the number of comparisons of a partition including com-
parisons to points in the ghost/halo regions of that partition (in contrast to the
Spark-based implementations considering only the number of points in a parti-
tion without taking ghost/halo regions into account). This would give the end
user faster DBSCAN clustering on big data platforms. (Having more or less the
same parallelization ideas implemented on both platforms would also allow bet-
ter assessment of the influence of C/C++ versus Java/Scala and of MPI versus
the RDD approach of Spark.) Also, the scientific binary HDF5 data file format
can currently not be processed by Hadoop or Spark in a way that data storage
locality is exploited. Hence, the binary file had to be converted to a text-based
input file format and one might argue that this I/O issue slowed down the Spark
implementations. But in fact, the load imbalance of the CPU load contributes
much more to the run-time than any I/O. As soon as the algorithms become
better load balanced, less CPU bound and instead more I/O bound, data lo-
cality matters. A simple approach to be able to exploit the harder to predict
locality of binary formats is to create some sort of “street map” in an initial and
easily to parallelize run and use later-on the data locality information contained
in this “street map” to send jobs to those nodes where the data is locally stored.
We have successfully demonstrated this approach [3] for processing with Apache
Hadoop the binary file formats used in the LHC experiments; the same approach
should also be applicable to HDF5 files.
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JUDGE at Jülich Supercomputing Centre (JSC).

The HPDBSCAN implementation of DBSCAN will be used as pilot applica-
tion in the research project DEEP-EST (Dynamical Exascale Entry Platform –
Extreme Scale Technologies) which receives funding from the European Union



18 Helmut Neukirchen

Horizon 2020 – the Framework Programme for Research and Innovation (2014-
2020) under Grant Agreement number 754304.

References

1. Schmelling, M., Britsch, M., Gagunashvili, N., Gudmundsson, H.K., Neukirchen,
H., Whitehead, N.: RAVEN – Boosting Data Analysis for the LHC Experiments.
In: Applied Parallel and Scientific Computing PARA 2010, Revised Selected Pa-
pers, Part II. Volume 7134 of LNCS., Springer (2012) doi:10.1007/978-3-642-28145-
7 21.

2. Memon, S., Vallot, D., Zwinger, T., Neukirchen, H.: Coupling of a continuum
ice sheet model and a discrete element calving model using a scientific workflow
system. In: Geophysical Research Abstracts. Volume 19 European Geosciences
Union (EGU) General Assembly 2017., Copernicus (2017) EGU2017-8499.

3. Glaser, F., Neukirchen, H., Rings, T., Grabowski, J.: Using MapReduce for High
Energy Physics Data Analysis . In: 2013 International Symposium on MapReduce
and Big Data Infrastructure, IEEE (2013/2014) doi:10.1109/CSE.2013.189.

4. Ester, M., Kriegel, H., Sander, J., Xu, X.: Density-based spatial clustering of
applications with noise. In: Proceedings of the Second International Conference
on Knowledge Discovery and Data Mining, AAAI Press (1996)

5. Apache Software Foundation: Apache Hadoop. Web page (2017) http://hadoop.
apache.org/.

6. Neukirchen, H.: Performance of big data versus high-performance computing: Some
observations. In: Clausthal-Göttingen International Workshop on Simulation Sci-
ence, 27-28 April 2017, Göttingen, Germany. (2017) Extended Abstract.

7. Neukirchen, H.: Survey and Performance Evaluation of DBSCAN Spatial Cluster-
ing Implementations for Big Data and High-Performance Computing Paradigms.
Technical Report VHI-01-2016, Engineering Research Institute, University of Ice-
land (2016)

8. Neukirchen, H.: Elephant against Goliath: Performance of
Big Data versus High-Performance Computing DBSCAN Clus-
tering Implementations. EUDAT B2SHARE record (2017)
doi:10.23728/b2share.b5e0bb9557034fe087651de9c263000c.

9. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD international conference on Management of
data. Volume 14 Issue 2., ACM (1984) doi:10.1145/602259.602266.

10. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles. In: Proceedings of the 1990
ACM SIGMOD international conference on Management of data. Volume 19 Issue
2., ACM (1990) doi:10.1145/93597.98741.

11. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9) (1975) 509–517 doi:10.1145/361002.361007.

12. Kjolstad, F., Snir, M.: Ghost cell pattern. In: 2nd Annual Conference on Parallel
Programming Patterns (ParaPLoP). March 30-31st, 2010, Carefree, AZ., ACM
(2010) doi:10.1145/1953611.1953615.
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