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Abstract. The analysis and visualization of the LHC data is a good
example of human interaction with petabytes of inhomogeneous data.
After outlining the computational requirements for an efficient analysis
of such data sets, a proposal, RAVEN — a Random Access, Visualization
and Exploration Network for petabyte sized data sets, for a scalable
architecture meeting these demands is presented. The proposed hardware
basis is a network of "CSR”-units based on off-the-shelf components,
which combine Computing, data Storage and Routing functionalities.
At the software level efficient protocols for broadcasting information,
data distribution and information collection are required, together with
a middleware layer for data processing.
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1 Introduction

In particle physics the basic units which make up a data set are so-called
“events”. In former times an event did correspond to a photograph showing
the interaction of a high energy particle with an atomic nucleus in a bubble
chamber, at the LHC [1] it is the information recorded from a single bunch
crossing of the two proton beams. A bubble chamber photograph is shown in
Fig.1.

The bubble chamber is a detector device which allows to collect and to display
the full information about a high energy particle physics interaction in a very
intuitive form. Its main drawback is that it can only record events at a rate of a
few Hz, which renders it unsuitable to look for really rare types of interactions.
As a consequence, over the last 30 years they have been replaced by electronic
detectors which nowadays are able to scrutinize high energy interactions with
rates up to 40 MHz and to store information from potentially interesting events
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Fig. 1. Bubble chamber photograph of a high energy collision between elementary
particles. Secondary particles are created from the available energy and travel before
they decay or induce secondary interactions. The information about the reaction is
contained in the momentum vectors of the final state particles, their charges and the
points (vertices) of interactions. (Photo by CERN).

with a few kHz. For example at LHCD [2], one of the four large LHC experiments
at CERN, the typical amount of information corresponds to 50 kB per event and
events can be stored with a rate of 2 kHz. With an expected number of 2 x 10'°
events per year, the annual data volume amounts to O(1) PB.

Individual events are reconstructed by means of sophisticated numerical algo-
rithms. Those start from the raw information collected by the, depending on the
specific experiment, 1 - 200 million readout channels of the detector. From those
they extract the equivalent information one would have from a bubble chamber
photograph, i.e. particle trajectories, vertices, decay chains etc. An example how
the information from a modern electronic detector can be visualized is shown in
Fig.2.

The final analysis of the reconstructed data is conceptually simple in the
sense that all events are equivalent, i.e. at the event-level it parallelizes trivially.
Also the information content of a single event has a relatively simple structure,
consisting of lists of instances of a few basic elements such as “tracks” or “ver-
tices” which contain the measured information about the final state particles
created in a high energy collision. Different events will differ in the number of
those objects and the relations between them.

In contrast to analysis tasks in other branches science where the main prob-
lem is accessing the relevant data items, data analysis in particle physics is
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Fig. 2. Visualization of an interaction recorded by the LHCb experiment. Information
from electronically read out detectors is used to reconstruct trajectories of particles
created in a high-energy proton-proton collision. The computer generated image shows
a zoom to the region of the primary vertex where two protons from the counter-rotating
beams did collide. In a addition to a large number of particle created at the primary
vertex, the reconstruction also shows the decay of a so-called B-meson which after
creation at the primary vertex travels a few millimeters before decaying into three
longer lived final state particles (K, ut, ™).

completely dominated by the processing of the event information. Compared to
the processing step reading and decoding the data usually requires negligible
CPU resources. To illustrate this, consider the problem of finding for example
decays of so-called D%-mesons into a pair of final state particles in LHCb. Find-
ing such decays in an event requires checking all combinations of two tracks and
to decide whether or not this pair is consistent with coming from a D%-decay. In
LHCDb one has to check on average 73 combinations per event, with each single
check requiring up to hundreds of floating point operations. In addition, D° de-
cays into two final state particles, though still frequent compared to many other
decay channels of interest, are already rather rare. Only about 1 percent of all
events contains a DY, and only about 4 percent of those decay into the specific
two-particle final state. Already for this “easy” example the data analysis has to
cope with a situation where the background is about 200,000 times larger that
the signal.

The basic mode of data analysis in particle physics is characterized by two
steps. In the first step the data set is scrutinized for events containing a spe-
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cific signature. Events with this signature then are analyzed in detail, either by
extracting some characteristic information or by iterating the selection process
with additional criteria.

It is evident that depending on the selection criteria the size of the event
sample used in a specific analysis can vary by many orders of magnitude. On
the other hand, the maximum communication bandwidth available to return
information back to the user will essentially by fixed, i.e. the interaction between
user and the full data set must be such that the network traffic stays below a
certain limit.

The quantities of interest in a typical particle physics analysis are proba-
bilities or probability density functions for a certain process or configuration
to occur. Numerical estimates are obtained by means of histograms, i.e. simple
counters for how often a certain condition is observed. The analysis framework
thus must be able to handle this kind of cumulative information, which even for
very large event samples reduces to a limited set of numbers.

In addition to cumulative information from many or even all events, the
system must be able to transmit some or all information from a few selected
events. This is of particular relevance for very rare types for final states, such as
for example events with a candidate Higgs decay or other exotic processes and
which require an in depth analysis of single events.

The combination of the two access modes becomes particularly relevant in
the context of interactive searches for special event types starting from the full
data set. Here powerful visualization tools and user interfaces are required, which
provide an intuitive representation of the properties of the event set, together
with the possibility of interactive select-and-zoom schemes to focus on certain
candidates.

2 Computing Requirements

During the construction of the CERN Large Hadron Collider (LHC) it was re-
alized that the analysis of the data produced by the LHC experiments requires
a computing infrastructure which at the time went beyond the capabilities of a
single computing center, and which since then has been built up in the frame-
work of the Worldwide LHC Computing Grid (WLCG) [3-5]. The design of the
WLGC was driven by the requirement to allow a sharing of the effort between
many partners and the ability to cope with future increases of the computing
demands.

Despite the fact that many new concepts regarding data distribution and
sharing of computing load have been implemented, the computing models for
the analysis of the LHC data (see e.g. [6]) are still very close to the approach by
earlier generation particle physics experiments. They focus on filtering the huge
initial data sets to small samples relevant for particular physics question, which
then are handled locally by the physicist doing the analysis.

While making efficient use of limited resources, this scheme has some obvious
shortcomings.



RAVEN — Boosting Data Analysis for the LHC Experiments 5

— At a given time direct access is possible to only a small fraction of the total
event sample. This reduced sample also has to serve to define and check the
selection criteria for the selection jobs. As a consequence the selection may
be biased or inefficient.

— The time constant for full access to the data is given by the frequency of the
selection runs which go through the complete data set. Programming errors
or missed deadlines for code submission can easily result in serious delays
for the affected analyses.

— High statistics measurements, i.e. analysis which use information from more
than a small fraction of all events, are not feasible. The same holds for finding
exceptional rare events which are not caught by selection criteria based on
prior expectations.

What is needed is a framework which allows random access on petabyte-
size datasets. It should have a scalable architecture which allows to go to real
time information retrieval from the entire data set. The initial use case of this
infrastructure will be faster and more efficient access to the data for classical
analysis scenarios. Beyond that, however, also novel ways of interacting with the
data and new ways of data visualization will evolve.

3 Design Aspects

The requirements outlined above suggest a design similar to that of a biological
brain: a dense network of many “simple” nodes combining data storage, pro-
cessing and the routing of information flow. For the use case of particle physics,
each node would store a small fraction of the total event sample, have the possi-
bility to run an analysis task on those events and route information back to the
user having submitted the analysis query. In the following these nodes will be
referred to as Computing-Storage-Routing (CSR) units, which at the hardware
level are standard commodity CPUs. With an appropriate middleware-layer a
network of such CSR-units will then constitute a RAVEN system: a Random
Access, Visualization and Exploration Network for petabyte sized data sets.

The key feature which guarantees exact scalability is a peer-to-peer archi-
tecture [7] where every node is able to perform every functionality required by
the system. This departs significantly from the current Grid installation which
is built around a system of services that are associated with distinct units,
such as for example “worker nodes”, “storage elements” or “work-load man-
agement systems”. While the current Grid-approach is natural in the sense that
different functionalities are identified and implemented separately, it results in
a rather complex infrastructure with corresponding requirements in terms of
maintenance. The RAVEN approach, in contrast, aims at defining a protocol or
rule-set which allows the system to organize itself.

Another important aspect of RAVEN is redundant and possibly also en-
crypted data storage. While encryption should simply ensure the confidentiality
of the data also in case that public computing resources are used, redundant
storage assures that the entire data set can still be processed even if some nodes
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Node 1 Node 2

data set A
data set B

data set A
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Fig. 3. Simple of example of redundant data storage on two nodes. If both nodes are
present, the analysis starts in parallel on different subsets. Node 1 will start on data
set A, node 2 will start with B. If one node is unavailable, either because it’s down or
busy with another task, then the other node will process the entire data set.

become unavailable. A simple sketch how duplication of data between two nodes
can serve these purposes is shown in Fig. 3. Although encryption adds to the
computing costs, typical applications in particle physics analysis are such that
the decoding step only adds a small overhead to the actual analysis.

For a particular analysis or visualization task, instructions would be broad-
cast to all CPUs. These instructions will then be executed on the local event
samples, and the information retrieved from those events routed back to the
user.

As discussed before, with respect to the information that is returned one
has to distinguish between cumulative data, and per-event data. Since all data
have to go back to a single node, per-event data should either be of only limited
volume per event or should be transmitted for only a subset of all events. Cu-
mulative data on the other hand, such as histograms, flowing back through the
network can be accumulated on-the-fly such that the total amount of informa-
tion transmitted over the network stays small even for very large event samples.
Figure 4 illustrates the case.

4 Implementation Aspects

A central feature of the design of a RAVEN system is its scalability, which almost
automatically comes from the fact the different events are independent and thus
can be spread over as many CSR-units as are available. Scalability allows to
develop RAVEN on a small test system and later expand the working system to
the size required for a particular application, possibly also taking advantage of
cloud-computing infrastructures.

A particular implementation dealing with 1 PB of data spread over 10> CSR-
units would correspond to 10 GB per node. Assuming a processing speed of
10 MB/s, which seems possible today, the data set could be processed within
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a quarter of an hour. A test system should typically have one percent of the
capacity of the 1 PB system.

One problem that has to be addressed for RAVEN is the creation of ad-hoc
routing and communication topologies for a given analysis query to be used both
to distribute the query to all nodes and to collect the results of the analysis.
Here a big challenge arises from the fact that logically certain next-neighbor
topologies may be required which then have to be mapped to actual routing
schemes by taking into account the existing hardware capabilities and the data
flow that needs to be handled. Furthermore, since many analyses will only access
subsets of the full data set, the system should be able to process multiple queries
simultaneously.

Another issue is the distribution of data, analysis code and actual query of a
specific analysis. One big challenge is the distribution of the full data set. Here
different data items have to go to different nodes, which in view of the total data
volume that has to be distributed is a non-trivial task. Uniform distribution
can be achieved by some hashing scheme, where a hash-code of every event or
file determines on which node it will be stored and analyzed [8]. If the RAVEN
system is able to autonomously distribute the address-space spanned by the hash
code among its members, then an event entering the system via any node can
be routed to its proper destination. It is also easy to check whether a particular
event is already stored on the system. The data distribution scheme also should
take care of the redundant storage scheme. Finally, the RAVEN system must be
able to automatically detect new CSR-units joining the system and to migrate
part of the data to the new resources.

Apart from data distribution also bookkeeping of available data has to be
addressed. Although particle physics analyses can be performed on subsets of the
total event sample, a proper interpretation of the results requires the knowledge
about the actual events that have been processed. Even if the redundancy built
into the system will normally guarantee access to the full data set, a monitoring
of which events contribute to a particular result has to be foreseen.

While the distribution of the full data set will happen only rarely, updates
of the analysis code will be more frequent, though still rare compared to anal-
ysis queries. The latter two can be distributed via a broadcast mechanism. The
splitting into analysis code and query is motivated by the goal to minimize the
network traffic. Instead of distributing the full analysis code, which for a typical
LHC experiments amounts to O(1) GB, with each query, a layered (“middle-
ware”) approach suggests itself. Here the (in general machine dependent) anal-
ysis code forms a software layer on top of the operating system. This “analysis
middleware” then provides a machine independent high level language to per-
form the actual physics analysis.

While the mapping of the classical analysis models based on histograms or n-
tuples on a RAVEN infrastructure is relatively straightforward, the system calls
for novel approaches to exploit its real-time capabilities in new visualization
tools for the interaction of a human being with petabytes of data.
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analysis network

user

Fig. 4. Sketch of a RAVEN network. Histogram data, for example, produced by the
analysis jobs on the different CSR-units are routed back to the node connected to the
user, and updated on-the-fly on the way back. The links show which nodes are aware
of their neighbors, i.e. the network topology routing and data distribution have to deal
with.

The performance of the system can be optimized by making sure that events
falling into the same class with respect to a specific selection are distributed
as evenly as possible. An analysis query addressing only that subset then will
harness a large number of CPU simultaneously and finish with minimal time.
Providing analysis jobs with the possibility to tag events as belonging to a certain
class should lead to a system which is able to automatically migrate data between
nodes in order to minimize access times.

Another level of optimization would be to store event related information
which is created by a specific analysis for further use. Information that should
be kept in a persistent store can either be specified by the user, or selected
automatically, e.g. storing by default all information that is determined with
computational cost above a certain threshold.

5 Prior Work

Realization of the RAVEN project will benefit greatly from already existing
knowledge in networking, middleware design, distributed data storage and com-
puting. Projects which are in principle interesting from the point of view of
RAVEN are for example BitTorrent [9,10] for broadcasting information over
a network, the Apache Hadoop [11] project addressing MapReduce-based [12]
scalable, distributed computing, the BOINC [13, 14] framework for volunteer com-
puting and grid computing, or the xrootd [15,16] server for low latency high
bandwidth data access in the root [17, 18] framework, which defines the de-facto
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standard for data analysis in particle physics. Additional input could come from
the Grid-middleware developers e.g. gLite [19,20] or the Linux community [21].

6

Summary

Physics analysis of the data recorded by the LHC experiments calls for new com-
puting architectures which ares scalable to allow fast parallel access to petabytes
of data. One possible approach is the RAVEN system, featuring redundant stor-
age, on-the-fly accumulation of results and a rigorous middleware-approach to
the data analysis.
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