
Taming the Raven – Testing the Random Access,
Visualization and Exploration Network RAVEN

Helmut Neukirchen

Faculty of Industrial Engineering, Mechanical Engineering and Computer Science
University of Iceland, Dunhagi 5, 107 Reykjav́ık, Iceland

helmut@hi.is

Abstract. The Random Access, Visualization and Exploration Network
(RAVEN) aims to allow for the storage, analysis and visualisation of
peta-bytes of scientific data in (near) real-time. In essence, RAVEN is a
huge distributed and parallel system.
While testing of distributed systems, such as huge telecommunication
systems, is well understood and performed systematically, testing of par-
allel systems, in particular high-performance computing, is currently lag-
ging behind and is mainly based on ad-hoc approaches.
This paper surveys the state of the art of software testing and investi-
gates challenges of testing a distributed and parallel high-performance
RAVEN system. While using the standardised Testing and Test Control
Notation (TTCN-3) looks promising for testing networking and commu-
nication aspects of RAVEN, testing the visualisation and analysis aspects
of RAVEN may open new frontiers.

Keywords: Testing, Distributed Systems, Parallel Systems, High-Per-
formance Computing, TTCN-3

1 Introduction

The RAVEN project aims to address the problem of the analysis and visuali-
sation of inhomogeneous data as exemplified by the analysis of data recorded
by a Large Hadron Colider (LHC) experiment at the European Organization
for Nuclear Research (CERN). A novel distributed analysis infrastructure shall
be developed which is scalable to allow (near) real-time random access and in-
teraction with peta-bytes of data. The proposed hardware basis is a network of
intelligent Computing, data Storage and Routing (CSR) units based on standard
PC hardware. At the software level the project would develop efficient protocols
for data distribution and information collection upon such a network, together
with a middleware layer for data processing, client applications for data visual-
isation and an interface for the management of the system [1].

Testing of distributed systems, for example huge telecommunication systems,
is mature and performed rigorously and systematically based on standards [2].
In contrast, a literature study on testing of parallel computing systems, such
as high-performance cluster computing, reveals that testing is lagging behind

2 Helmut Neukirchen

in this domain. However, as computing clusters are just a special kind of dis-
tributed systems1, it seems worthwhile to apply the industry-proven mature test-
ing methods for distributed systems also for testing software of parallel systems.
The future RAVEN system is an example for such a parallel system. As testing
and testability should already be considered when designing a system [3], this
paper investigates the state of the art and the challenges of testing a distributed
and parallel high-performance RAVEN system, even though RAVEN is still at
it’s initial state of gathering requirements and neither a testable implementation
nor a design is available, yet.

This paper is structured as follows: Subsequent to this introduction, Sec-
tion 2 provides as foundation an overview on the state of the art of software
testing. Section 3 gives a glimpse of the standardised Testing and Test Control
Notation (TTCN-3) which is suitable for testing distributed systems. As the
main contribution, this paper discusses, in Section 4, the challenges of testing
RAVEN. Final conclusions are drawn in Section 5.

2 An Overview on Software Testing

Software testing is the most important means to give confidence that a system
implementation meets its requirements with respect to functional and real-time
behaviour. Even though testing is expensive2, it pays off as it is able to reveal
defects early and thus prevents them from manifesting during productive use.

In his seminal textbook on software testing [4], G. Myers defines testing
as “[. . .] the process of executing a program with the intent of finding errors”.
However, software testing is no formal proof. Hence, E.W. Dijkstra remarked
that testing can be used to show the presence of bugs, but never to show their
absence [5].

While Myers refers in his above definition to a program which is tested, a
more general term for the object of test is item under test. The item might range
from a single software component (unit test) to a whole software system3 (sys-
tem test – the item under test is here typically called system under test (SUT))
via a composed set of components (integration test). The possible levels (some-
times called scopes) of testing are just one dimension of testing as shown in
Fig. 1. The second dimension refers to the goal or type of testing: structural
testing has the goal to cover the internal structure of an item under test, for
example, the branches of control flow. To achieve this, knowledge of the internal
structure (for example, conditional statements) is required (glass-box test [4]).
The goal of functional testing is to assess an item under test with respect to
the functionality it should fulfil with respect to it’s specification disregarding
internal implementation details (black-box test [6]). Non-functional testing aims

1 The main difference between distributed systems and parallel systems is probably
that distributed systems focus on communication, whereas parallel system focus on
computation.

2 Up to 50% of the overall software development costs are incurred in testing [4].
3 This can be even a large distributed or parallel system.

Taming the RAVEN 3

Structural

Functional

Non−

(e.g.

real−time)

functional

Unit System

Test level

Integration

T
e

s
t

ty
p

e

Distributed

Local

Tes
t d

is
tr
ib

utio
n

Fig. 1. Dimensions of testing

at checking the fulfillment of non-functional requirements. A variety of differ-
ent non-functional properties exist, for example, performance with respect to
real-time requirements, scalability, security, or usability. The third dimension of
testing comes from the fact that the tester (or test system as it is often called)
may be distributed (that is: the test runs on multiple nodes) or local (that is:
the test runs on just one single node). In particular if the item under test itself
is distributed, a distributed tester may ease testing or enable certain tests in
the first place. The three dimensions are independent from each other, thus the
different test types can be performed at all levels and in a local or distributed
fashion.

Testing, in particular functional testing, is typically performed by sending
a stimulus (for example, a function call, a network message, or an input via a
user interface) to the item under test and observing the response (for example, a
return value, a network reply message or an output at the user interface). Based
on the observation, a test verdict (for example, pass or fail) is assigned. Testing
may be performed manually by running the item under test, providing input and
observing the output. Distributed tests, that require co-ordinated test actions,
and also real-time performance tests are preferably automated.

Due to the composition and interaction of components, testing at different
levels is likely to reveal different defects [7,8]. Hence, testing at just one level is
not considered sufficient, but performed at all levels. To reveal defects as soon
as possible, a component is unit tested as soon as it is implemented. In case of a
class, for example, a unit test would aim at covering all methods. Once multiple
components are integrated, they are subject to integration testing. Here, a test
would aim at covering the interface between the integrated components. Once
the whole system is completed, a system test is performed. In this case, usage
scenarios would be covered. All these tests are typically performed within an

4 Helmut Neukirchen

Test system

Test ComponentTest Component

Under
Test

System

Layer 1

Layer 2 Layer 2

Layer 1

Network

Fig. 2. System test

Test system

Test ComponentTest Component

Under
Test

Unit

Layer 1

(a) Ideal

Test system

Test ComponentTest Component

Under
Test

System

Layer 1

Network

(b) Pragmatic

Fig. 3. Unit test

artificial test environment, often at special test lab. However, a special kind
of system test is the acceptance test that is performed in the final productive
environment.

Testing in artificial test environments allows test on single or integrated com-
ponents to be performed in isolation by replacing components on which the item
under test depends by special test components. This allows for better control of
the item under test and makes sure that really the item under test is tested and
not implicitly any of the other components. A layered architecture of a network
protocol stack shall serve as an example for this technique: At the system test
level, all the involved components (network layer and higher layers 1 and 2 of
the protocol stack on both sides) are tested (Fig. 2). At the unit test level, a
single unit (such as a class of an object-oriented implementation or an imple-
mentation of a network protocol layer as in the example in Fig. 3(a)) is tested.
As shown in Fig. 3(a), the environment of that unit under test is replaced by a
test environment consisting of test components that act at the interfaces of the
unit under test. In practice, this ideal approach may not be possible (or is too
expensive): in a layered architecture, higher layers may have hard-coded depen-
dencies on lower layers (thus the lower layer cannot be replaced) or the lower
layers provide quite complex functionality that cannot easily be replaced by a
test component. The ISO/IEC standard 9646 Conformance Testing Methodology

Taming the RAVEN 5

and Framework (CTMF) [2] suggests to circumvent this problem by testing first
the lowest layer in an isolated unit test. Then, the next layer is tested together
with the already tested underlying layer (Fig. 3(b)) and so on. As a result of this
incremental approach, each layer (or unit) can be tested separately (assuming
that the lower layers have been adequately tested) even if the ideal approach is
not possible for pragmatic reasons.

3 Distributed Testing with TTCN-3

The Testing and Test Control Notation (TTCN-3) [9] is a language for specifying
and implementing software tests and automating their execution. Due to the fact
that TTCN-3 is standardised by the European Telecommunications Standards
Institute (ETSI) and the International Telecommunication Union (ITU), several
commercial tools and in-house solutions support editing test suites and compiling
them into executable code. A vendor lock-in is avoided in contrast to other
existing proprietary test solutions. Furthermore, tools allow to execute the tests,
to manage the process of test execution, and to analyse the test results.

While TTCN-3 has its roots in functional black-box testing of telecommu-
nication systems, it is nowadays also used for testing in other domains such as
Internet protocols, automotive, aerospace, service-oriented architectures, or med-
ical systems. TTCN-3 is not only applicable for specifying, implementing and
executing functional tests, but also for other types of tests such as real-time per-
formance, scalability, robustness, or stress tests of huge systems. Furthermore,
all levels of testing are supported.

TTCN-3 has the look and feel of a typical general purpose programming lan-
guage. Most of the concepts of general purpose programming languages can be
found in TTCN-3 as well, for example, data types, variables, functions, param-
eters, visibility scopes, loops, and conditional statements. In addition, test and
distribution related concepts are available to ease the specification of distributed
tests.

As TTCN-3 is intended for black-box testing, testing a system under test
(SUT)4 takes place by sending a stimulus to the SUT and observing the re-
sponse. In TTCN-3, communication with the SUT may be message-based (as,
for example, in communication via low-level network messages) or procedure-
based (as, for example, in communication via high-level procedure or method
calls). Based on the observed responses, a TTCN-3 test case can decide whether
an SUT has passed or failed a test.

In practise, testing a distributed system often requires that the test system
itself is distributed as stimuli and observations need to be performed at different
nodes. In contrast to other test solutions, TTCN-3 supports distributed testing
– not only the SUT may be distributed or parallel, but also the test itself may
consist of several test components that execute test behaviour in parallel. The
parallel test components may even communicate with each other to co-ordinate

4 Or any other test item depending on the test level.

6 Helmut Neukirchen

TTCN−3 Test system

Test ComponentTest Component

System Under Test

Fig. 4. A sample distributed TTCN-3 test system

their actions or to come to a common test verdict. Figure 4 shows an example
of a distributed TTCN-3 test system.

TTCN-3 test cases are abstract, this, for example, means they do not care on
which concrete nodes the parallel test components are distributed. It is therefore
the responsibility of the TTCN-3 test execution tool to perform the mapping of
the abstract distributed test onto a concrete distributed test environment [10].
Thus, the abstract TTCN-3 test cases can be re-used in different distributed
environments.

TTCN-3 and it’s predecessors TTCN and TTCN-2 have been successfully ap-
plied by industry and standardisation for testing huge distributed systems (such
as the GSM, 3G, and 3G LTE mobile telecommunication systems). In addition
to pure functional tests, TTCN-3 has also been used for performance and load
tests that involve testing millions of subscribers [11]. While these applications of
TTCN-3 were mainly in the domain of testing “classical” distributed systems,
only one work is known where TTCN-3 is used in the domain of “classical” paral-
lel systems: Rings, Neukirchen, and Grabowski [12] investigate the applicability
of TTCN-3 in the domain of Grid computing, in particular testing workflows of
Grid applications.

More detailed information on TTCN-3 can be found in the TTCN-3 stan-
dard [9], in an introductory article [13], in a textbook [14], and on the official
TTCN-3 website [15].

4 Testing RAVEN

The intended overall architecture of RAVEN is depicted in Fig. 5(a): the Com-
puting, data Storage and Routing (CSR) nodes are connected via an underlying
network. High-level data analyses are co-ordinated by an analysis layer that dis-
tributes the work load to the individual CSR nodes where the respective data to
be analysed resides. The analysis results are then visualised by a corresponding
visualisation layer that also provides the general graphical user interface. In ad-
dition, to support analysis by the human eye, a direct visualisation of the data
is possible. To this aim, the visualisation layer accesses directly the CSR nodes.

For testing at the different test levels, the approaches described in Section 2
can be applied: In accordance to Fig. 3(b), Fig. 5(b) depicts how to perform a

Taming the RAVEN 7

CSR

Network

CSR CSR

Analysis

Visualisation/User Interface

(a) Overall architecture of RAVEN

CSR

Network

Test Component

Test Component

Test Component

(b) Unit test

CSR

Network

Test Component

Test Component

Analysis

(c) Integration test

CSR

Network

CSR CSR

Analysis

Visualisation/User Interface

Test Component

(d) System test

Fig. 5. RAVEN and different test levels

unit test of a CSR node. An integration test of a CSR node and the analysis
component that have been integrated together is shown Fig. 5(c). For the system
(and acceptance) test, the whole system is covered using representative usage
scenarios, however the system under test is interfaced via the user interface only
as depicted in Fig. 5(d).

Functional testing of RAVEN should be performed at all test levels. For
functional testing of the networking and communication aspects, the proven
TTCN-3-based standard approach from protocol testing for telecommunication
and network systems [2] is applicable including distributed testing. For testing
the user interface and visualisation aspects, the standard capture/replay testing
approach5 may not work here as RAVEN aims at providing completely new, yet
unknown kinds of graphical user interfaces that are not supported by current
capture/replay tools. However, testing of the user interface parts that are based
on standard user interface technology should be possible. Testing of the analysis
aspect should be feasible as long as small “toy” examples are used, where the
result is known in advance.

4.1 Challenges of Testing RAVEN

While functional testing of RAVEN seems to be feasible as described above,
the non-functional test types (performance test, scalability test, load test) that
seem to be crucial for a system such as RAVEN that aims at providing (near)

5 In capture/replay testing, a correct interaction with the system under test via the
user interface is recorded (user inputs as well as resulting system outputs). For
testing, the recorded user inputs are replayed and the resulting actual system outputs
are compared against the expected recorded system outputs.

8 Helmut Neukirchen

real-time responses and scalability can be expected to be a challenge. While
these tests may be possible at unit level, performance results from unit level
may not be extrapolated to the system level as, for example, scalability at unit
level does not imply scalability of the system as a whole due to management and
communication overheads. Thus, the non-functional tests need to be performed
at the system level. However, for system level testing of a system of this size,
probe effects [16] may occur at the software (and hardware) scale: by observing
(= testing) a system, we unavoidably influence it. For example, the communi-
cation overhead to co-ordinate distributed test components reduces the network
capacity that is available for the RAVEN system that is being tested. Similarly,
the actual observation requires CPU time that is lacking in the RAVEN system
under test.

A further challenge is how to test analysis algorithms working on peta-bytes
of test data. Comparison of the observed output with an the expected output
may be difficult if the expected output is not known in advance as it can only
be calculated by the analysis algorithm under test itself6. Furthermore, these
peta-bytes of test data need to be generated and stored. However, as RAVEN
itself will be challenged by storing and processing peta-bytes of data, the test
environment will be challenged as well to manage the test data. Thus, testing
of RAVEN will only be possible to a certain limit within an artificial test en-
vironment. RAVEN will require a huge amount of hardware and it will not be
economically feasible to use a comparable amount of hardware just for setting up
an artificial test environment. This fact inevitably results in the conclusion that
performance and scalability beyond a certain size will only testable by productive
use in the real environment. As such, a system test within a test environment
will not possible. Instead, RAVEN can only be tested immediately in it’s real
hardware environment – that is, only acceptance testing will be possible7. How-
ever, performance and scalability assessments of RAVEN beyond a certain size
may be evaluated by simulation or analytical techniques based on performance
models [18,19].

5 Conclusions

We have considered the state of the art in software testing and at the distributed
test language TTCN-3, and we investigated possibilities and challenges of testing
a RAVEN system.

It seems that the state of the art in software testing is in principle mostly
mature enough for testing a RAVEN system. However, it is the fact that the large
scale of RAVEN itself opens new frontiers that poses problems. As a result, a

6 This is a current research topic, see for example the “First International Workshop
on Software Test Output Validation” 2010.

7 The approach taken by others (for example the Apache Hadoop project for processing
huge data sets [17]) confirms this: only small tests are performed in an artificial test
environment – “big” tests (performance and scalability) involving huge amounts of
data are essentially productive-use tests.

Taming the RAVEN 9

true system test in an artificial test environment will not be possible because
beyond a certain limit (in terms of size and complexity), only acceptance testing
in the final environment will be possible. To some extent, the problems to be
expected concerning the test of RAVEN are unavoidable due to testing overheads
and probing effects on the software, hardware and network scale. The challenges
of testing RAVEN should not lead to the conclusion to perform no testing at all,
but to the contrary: to test where possible.

TTCN-3 is a test language that has concepts for testing distributed and
parallel systems, mainly by supporting distributed testing based on concurrently
running parallel test components. While these concepts are successfully applied
for testing distributed systems, there is a striking lack of applying them for
testing parallel systems. One reason might be that most software in parallel
computing is from the domain of scientific computing. Typically, this software is
written by the scientists themselves who are experts in their scientific domain,
but typically not experts in software engineering thus lacking a background in
software testing. Another reason is probably that distributed systems and testing
them has a strong focus on message exchange and communication, while in
parallel systems this is only a minor aspect as the main focus is on computation.
However, both kinds of systems can be considered as similar when it comes to
black-box testing them; thus, TTCN-3 should be applicable for testing software
of parallel systems as well as it is for testing software of distributed systems.
However, it still needs to be investigated whether a generic test solution like
TTCN-3 (and the implementing TTCN-3 tools) is sufficient and in particular
efficient enough, or if specifically tailored and hand tuned test solutions are
required.

Finally, as RAVEN aims at not being just deployable on a single cluster, but
to extend to external computing and storage resources in the Internet such as
cloud computing, a research project has just been started by the author that
investigates testability issues in cloud computing environments.

References

1. Schmelling, M., Britsch, M., Gagunashvili, N., Gudmundsson, H.K., Neukirchen,
H., Whitehead, N.: RAVEN – Boosting Data Analysis for the LHC Experiments.
(This volume).

2. ISO/IEC: Information Technology – Open Systems Interconnection – Conformance
testing methodology and framework. International ISO/IEC multipart standard
No. 9646 (1994-1997)

3. Wallace, D.R., Fujii, R.U.: Software verification and validation: An overview. IEEE
Software 6 (May 1989) 10–17

4. Myers, G.: The Art of Software Testing. Wiley (1979)

5. Dijkstra, E.: Notes on Structured Programming. Technical Report 70-WSK-03,
Technological University Eindhoven, Department of Mathematics (April 1970)

6. Beizer, B.: Black-Box Testing. Wiley (1995)

7. Weyuker, E.: Axiomatizing Software Test Data Adequacy. IEEE Transactions on
Software Engineering 12(12) (December 1986)

10 Helmut Neukirchen

8. Weyuker, E.: The Evaluation of Program-based Software Test Data Adequacy Cri-
teria. Communications of the ACM 31(6) (June 1988) DOI: 10.1145/62959.62963.

9. ETSI: ETSI Standard (ES) 201 873 V4.2.1: The Testing and Test Control Notation
version 3; Parts 1–10. European Telecommunications Standards Institute (ETSI),
Sophia-Antipolis, France (2010)

10. Din, G., Tolea, S., Schieferdecker, I.: Distributed Load Tests with TTCN-3. In:
Testing of Communicating Systems. Volume 3964 of Lecture Notes in Computer
Science., Springer (2006) 177–196 DOI: 10.1007/11754008 12.

11. Din, G.: An IMS Performance Benchmark Implementation based on the TTCN-
3 Language. International Journal on Software Tools for Technology Transfer
(STTT) 10(4) (2008) 359–370 DOI: 10.1007/s10009-008-0078-x.

12. Rings, T., Neukirchen, H., Grabowski, J.: Testing Grid Application Work-
flows Using TTCN-3. In: International Conference on Software Testing Veri-
fication and Validation (ICST), IEEE Computer Society (2008) 210–219 DOI:
10.1109/ICST.2008.24.

13. Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A., Willcock, C.:
An introduction to the testing and test control notation (TTCN-3). Computer
Networks 42(3) (June 2003) 375–403 DOI: 10.1016/S1389-1286(03)00249-4.

14. Willcock, C., Deiß, T., Tobies, S., Keil, S., Engler, F., Schulz, S.: An Introduction
to TTCN-3. Wiley, New York (2005)

15. ETSI: TTCN-3 Website. http://www.ttcn-3.org

16. Fidge, C.: Fundamentals of distributed system observation. IEEE Software 13
(1996) 77–83

17. Apache Software Foundation: Apache Hadoop. http://hadoop.apache.org/

18. Law, A., Kelton, W.: Simulation Modeling and Analysis. McGraw-Hill (2000)
19. Skadron, K., Martonosi, M., August, D., Hill, M., Lilja, D., Pai, V.: Challenges

in Computer Architecture Evaluation. IEEE Computer 36(8) (2003) 30–36 DOI:
10.1109/MC.2003.1220579.

http://www.ttcn-3.org
http://hadoop.apache.org/

	Taming the Raven – Testing the Random Access, Visualization and Exploration Network RAVEN
	Introduction
	An Overview on Software Testing
	Distributed Testing with TTCN-3
	Testing RAVEN
	Challenges of Testing RAVEN

	Conclusions

