
Validating the Behavioral Equivalence
of TTCN-3 Test Cases

Philip Makedonski, Jens Grabowski
Institute of Computer Science

University of Göttingen
Göttingen, Germany

Email: {makedonski, grabowski}@cs.uni-goettingen.de

Helmut Neukirchen
Faculty of Industrial Engineering,

Mechanical Engineering and Computer Science
University of Iceland

Reykjavı́k, Iceland
Email: helmut@hi.is

Abstract—Refactoring has been proven as useful means to
improve the quality of source code. However, when improperly
applied, it may introduce undesired changes to the observable
behavior of the software. In this paper, an equivalence checking
approach is presented to validate the behavior preservation after
the application of refactoring in the domain of test cases specified
using the Testing and Test Control Notation Version 3 (TTCN-3).
The approach is based on bisimulation and incrementally checks
the observable behavior of two test cases at runtime for equi-
valence. The approach is implemented prototypically and sample
experiments are conducted to evaluate the effectiveness of the
approach.

Keywords—behavior; equivalence; bisimulation; TTCN-3

I. INTRODUCTION

Refactoring [1] has been established as a common approach
for the improvement of the quality of source code. Recently,
it has also found its way and is fulfilling its purpose in the
domain of test languages. Zeiss et al. [2][3] provided a basis
for the application of refactorings to test cases specified in
the Testing and Test Control Notation Version 3 (TTCN-3)
by introducing a catalog of refactorings and tool support
for their automated application. However, the application of
refactorings, as well as the design of new refactorings face
a major challenge—refactorings, by definition, must preserve
the observable behavior of the refactored entity. Validating that
this is indeed the case after a refactoring has been applied is
thus essential [4], but has turned out to be a non-trivial task.

Previous work has initially suggested formal approaches
based on predicate calculus [5][6], concept analysis [7], graph
rewriting [4], and algebraic refinement rules [8]. These have
been deemed insufficient and/or not applicable automati-
cally [9]. Other publications [1][6] have proposed the use of
specifications to measure the refactored entities against. Test
suites can serve this purpose and have thus been suggested to
be used as ”safety nets” [1]. For the validation of the behavior
preservation after refactoring of test suites, however, this will
require a perspective shift—the test suites will then have to be
validated against the System Under Test (SUT) before and after
undergoing refactoring, as proposed by [10]. As intuitive as
it may sound, such an approach has a limited applicability,
due to the fact that generally only a single path of a test
suite is covered in such a context. In [2] and [11], it was
suggested that bisimulation [12][13][14][15] could be used to

check the behavior of the original and the refactored test cases
for equivalence.

In this paper, an approach is presented to address the
issue of validating the behavior preservation of refactorings
in TTCN-3. The approach seeks to show that the observable
behaviors of the TTCN-3 test cases before and after refactoring
are equivalent. The remainder of this paper is structured
as follows: Section II contains a brief overview of relevant
key concepts. Section III presents the approach in detail.
Its prototypical implementation is outlined in Section IV.
Section V presents a summary of the results from the sample
experiments conducted to evaluate the applicability of the ap-
proach. Finally, Section VI concludes this paper and presents
an outlook for future work.

II. BASIC NOTIONS

TTCN-3 [16][17] is an internationally standardized test
specification and implementation language. It can be used
for both functional and non-functional black-box tests on
different levels. Various commercial [18][19][20][21][22][23]
and in-house tools support editing TTCN-3 source code and
compiling it into executable code, as well as management of
test suites and campaigns.

Prior to any further discussion on how to approach the
problem of validating the behavioral equivalence, notions of
behavior and behavioral equivalence need to be established.
Refactorings may affect the internal behavior of the entities
being refactored, but must not change the observable behavior.
The observable behavior of TTCN-3 test cases is defined by
the interactions of the test system running the test case with
the SUT and the test verdicts, which are the real output to the
user. The interactions between the test system and the SUT
take the form of messages being exchanged or procedure calls.
The approach presented in this paper takes only message-based
communication into consideration, however, the methods can
be adapted and transferred to procedure-based communication
as well.

A. Behavior

The observable behavior of TTCN-3 test cases can be
best monitored at the Test System Interface (TSI). The TSI
of a TTCN-3 test system consists of communication ports



that are visible to the SUT, and queues associated to these
ports. TTCN-3 test cases may (and usually do) utilize multiple
parallel test components, performing individual tasks simulta-
neously and therefore exhibiting individual parallel behaviors.
The test components also have communication ports of their
own, which can be connected to the ports of other test
components for internal communication or mapped to the ports
of the TSI for communication with the SUT. The behaviors of
the test components are not directly visible to the SUT and thus
do not directly constitute a part of the observable behavior of
the TTCN-3 test case. It is the collective interaction of all test
components with the SUT, through the TSI, as perceived from
the SUT’s perspective, that defines the observable behavior of
a test case. Thus, this notion of behavior will be the basis
for comparison and validation of the observable behavior of
TTCN-3 test cases.

As it is based on the interaction model of the test case,
the behavior can also be divided into atomic constituent parts,
which will be referred to as events. An event is any atomic
communication operation. A sequence of events constitutes a
path, or a possible behavior. The union of all paths defines the
complete behavior. An observable event, on the other hand, is
an event that is visible to the SUT. The possible sequences of
observable events define the observable behavior.

In order to achieve full coverage of the test case behavior,
the behaviors of the individual test components, albeit not
directly observable, have to be taken into consideration. They
will not be used for comparison, but rather for guiding the test
case behavior to achieve exhaustive coverage.

Given the above reasoning, there are two levels of behavior
that need to be defined: test component behavior for each
individual test component, which will serve behavior coverage
purposes, and overall (observable) test case behavior, which
will be used for comparison. The behavior of a test component
can be modeled using a Labeled Transition System (LTS) [13],
whereas the overall test case behavior needs to reflect the
TSI with its ports and port queues. The LTSs used for the
representation of the individual test component behaviors
consist of a set of states with no specific semantic meaning and
a set of labeled transitions that denote the events that can take
place at a given state. The labels are direct references to the
specific events. The overall observable test case behavior on
the other hand is represented by queues of observable events.
The queues are associated to ports, one for the in and out
directions, for each port, so as to reflect the TSI from SUT’s
perspective.

Figure 1 outlines the two levels of behavior that need
to be considered—Level 0 (L0) denotes the individual test
component behaviors and Level 1 (L1) denotes the observable
test case behavior at the TSI, with the test system ports and
their associated queues.

B. Equivalence

In [24], it was observed that ”the correctness of application
of a refactoring rule is in the responsibility of the developer”
and that “there is (currently) no proof system that allows

test component 1

port1 port2

test component 2

port1 port2

...

TSI port1 port2 port3

SUT port1 port2 port3

TTCN-3 Test System

L
e

ve
l 0

 (
L

0
)

L
e

ve
l 1

 (
L

1
)

p
o

rt
3

ou
t

in

queues

Fig. 1. Notions of behavior in TTCN-3 test systems—Level 0 (L0)
denotes the individual test component behaviors and Level 1 (L1) denotes
the observable test case behavior at the TSI, with the test system ports and
their associated queues.

to formally prove correctness–neither automatic nor interac-
tively”. The approach presented in this paper seeks to address
these issues in the domain of TTCN-3 test cases. Informally,
“the correctness of application of a refactoring rule” will be
defined as “equivalence in the observable behavior of a test
case before and after the application of a refactoring rule”,
and the aim is to provide means to prove that the latter holds
under all circumstances that can be externally induced and
observed.

The observable behavior of a test case was established to
be the interaction model of the test system running the test
case, and the SUT, as perceived at the TSI. Equivalence in
the observable behavior will then mean equivalent interaction
models (at L1). The behavior of the individual test components
is not relevant at this point, since it is not visible to the
SUT. Moreover, different test component behaviors may still
produce the same observable behavior. In fact, there are
refactorings that introduce changes to the test component
behaviors and the test configuration, while still preserving the
overall behavior of the test system.

The presented approach considers only tests without real-
time constraints–while the temporal ordering of interaction
events is regarded for comparison of two test cases, the actual
timing between the interaction events is disregarded.

C. Bisimulation

Bisimulation [12][13][14][15], on an informal level, is a
relation that associates two (or more) systems, that behave in
the same way, under all circumstances. It could be thought
of as one system simulating the other and vice-versa, that



is, the systems can match each other’s actions. The bisimilar
systems are thus indistinguishable to an external observer,
which is what a test system running a refactored test case
and its counterpart running the unrefactored test case should
be to an SUT.

The approach proposed in this paper does not directly check
for bisimilarity. It is based on the concept of bisimulation,
more specifically weak bisimulation, which, in contrast to
strong bisimulation, disregards internal actions that occur
between observable events, and thus resembles the problem
setting more closely than strong bisimulation.

III. APPROACH

There are numerous challenges that an approach for the
validation of refactorings must face. Exhaustive coverage
and the resulting state-space explosion are among the most
prominent in the general context. Managing the behavior of
concurrent communicating systems is also a major challenge,
particularly in the present domain. TTCN-3 specific challenges
include timers, complex data types and templates, wildcard
and matching mechanisms.

The proposed validation approach consists of four major
parts: instrumentation, simulation, comparison, and logging.
They could be thought of as generally occurring in this
sequence, however, simulation, comparison, and logging occur
semi-simultaneously. Instrumentation and simulation address
the behavior management and exhaustive coverage challenges,
as well as the TTCN-3 specific issues. The interleaved sim-
ulation and comparison on-the-fly also help addressing the
state-space explosion problem, in that only small parts of the
behavior representations need to be available at any given
point.

Instrumentation is necessary to provide internal information
from within the test case at runtime, to facilitate its simulated
execution. The information ranges from the message contents
and order, that is expected from the SUT, to further control
and logging information. The instrumentation is applied on
the source code level, by means of parse-tree manipulations,
as it is most suitable for the particular context, and utilizes the
native communication mechanisms of TTCN-3 to export infor-
mation and provide external control of the test case execution
at runtime. Instrumentation is performed as a preprocessing
step, prior to the execution. In cases of data dependencies
that cannot be resolved automatically, data may be supplied
manually, which is then stored in a data pool for reuse.

Simulation is the core of the validation approach, as it
enables the comparison and logging parts and these are built
around it. Its purposes are to allow the execution of test cases,
managing TTCN-3 behavior and semantics as necessary, sys-
tematically cover all behaviors that can be externally observed
and induced by producing the necessary SUT responses,
provide traces for comparison and logging, and circumvent
the state-space explosion problem.

TTCN-3 test cases need an SUT to run against. Executing
a test case by itself is therefore not reasonable. When running
test cases against the SUT, the complete test case behavior

is difficult to cover. Usually, only one behavioral path is
covered. To achieve full coverage of a test case, the SUT
needs to be steered into sending in a systematic fashion the
responses necessary to drive a test case into a desired path.
This may be difficult to impossible to achieve depending
on the particular SUT. For a generic approach, it would be
required that all SUTs obey this principle. Instead, a simulated
SUT can be used, which interprets incoming stimuli, and,
with the help of the instrumentation, produces the necessary
responses to steer the execution of the test case into the desired
behavior dynamically, at runtime. During execution, traces are
generated from the simulation and fed for comparison and
logging purposes to the respective entities.

Achieving exhaustive coverage and managing the state-
space explosion are key aspects of the simulation. Exhaustive
coverage is achieved by incremental behavior model con-
struction and exploration at runtime. Behavior models are
constructed and explored individually, on the test component
level (L0). With the help of instrumented events, the reactive
behavior of the test case is revealed to the simulated SUT
during test case execution, resulting in a simulation configu-
ration. During execution, a path that has not been previously
covered is chosen, systematically for each test component. The
selection is governed by an exhaustive backtracking algorithm
operating on all the behavior models at L0. The test case is
then continuously re-executed until all the paths, in all test
components’ behaviors, in all combinations, are covered.

The state-space necessary for the simulation is reduced
to having only the current active path with the branching
edges for the alternative paths actively maintained for a test
component. During backtracking, the edges and nodes that
have been covered are then marked and reduced.

However, to validate the behavior of a refactored test case
using equivalence checking, it will still be necessary to have
representations of the complete test case behavior at L1
before and after the refactoring. To minimize the amount of
information necessary and the size of the representations, the
equivalence checking is applied on-the-fly. This is achieved by
executing the original and the refactored test case in parallel
against two independent simulated SUTs which produce traces
for comparison and feed them to the comparison entity. It
checks the traces for equivalence at L1 and discards the
processed traces. Should any discrepancies in the behavior
of the two test cases occur, logging is activated, collecting
information from both the comparison and the simulation to
provide the necessary information for the identification and
localization of the causes.

Concurrent communicating systems present a major chal-
lenge for such an on-the-fly approach. With communication
flowing over multiple channels concurrently, it is difficult to
establish an equivalence relation between two such systems,
and even more so to check such a relation on-the-fly. TTCN-3
test systems being inherently concurrent with multiple parallel
test components communicating with the SUT over single or
multiple communication channels are no exception. Further-
more, the active behavior of a TTCN-3 test system cannot be



directly controlled from the outside, that is, it may send stimuli
at will. Its reactive behavior, however, as far as receiving re-
sponses sent from the SUT is concerned, is where control can
be exercised. In message-based communication in TTCN-3,
the reactive behavior is blocking behavior, meaning when a
test component is expecting a response from the SUT, its
behavior is blocked until the appropriate response is received.
This allows partial control over the execution progress of a
test case. This also enables synchronization between the two
simultaneously running test cases, when they are in stable
states, i.e., all the active test components are in a blocked
state. Synchronization is necessary for incremental comparison
on-the-fly.

Another benefit of dynamic incremental comparison
on-the-fly is that it can influence the execution of the test cases
to detect and localize deep changes in behavior. Two fully
independently running test cases may take different paths at
an early point during their execution, generating mismatches
in the behavior from that point on, even if only a single
new branch was introduced or removed after that point in
the behavior representation of the refactored test case at L0,
which is referred to as a “deep change” in relation to that
early point. Thus, behavior alignment is necessary to detect
and localize such problems. Behavior alignment is the process
in which one of the simulated SUTs hands over the control of
its execution to the other simulated SUT. It is the simulated
SUT that is “ahead”, that has to surrender the control of
its behavior. “Ahead” means that it has covered a sub-tree
under a given branch of the behavior representation of a test
component’s behavior, which is still not fully covered by the
other simulated SUT. This is due to the presence of additional
branches in that sub-tree. During this process, the simulated
SUT that surrendered the control of its execution also suspends
its backtracking algorithms. The process continues until the
behaviors can be realigned at the point where the control was
surrendered.

There are a few peculiarities of TTCN-3 test systems that
need to be taken into consideration: Reactive behavior is
usually guarded by timers. Should the SUT fail to provide
an appropriate response to the test system in a given time-
frame, a timeout event occurs and an alternative behavior
is triggered. Thus, to allow for a reliable control over the
reactive behavior of a test system, it must be possible to
trigger timeouts externally, from the simulated SUT. This is
achieved by either substituting the timer-related events by
discrete events of which the simulated SUT has a full control,
or by interfering with the timing mechanisms of the test system
through a custom Platform Adapter (PA). PAs in TTCN-3
take care of timing representation and other test platform-
specific aspects. It generally depends on the particular case
which approach is preferable, however, the usage of the more
advanced approach that utilizes a custom PA is closer to the
native operational context of TTCN-3 test cases, where a real
SUT is used.

Finally, logging facilitates the localization and identification
of problem areas that introduced changes to the observable

TE: Original Test Case
(Instrumented)

TTCN-3 Test System

Simulated SUT

Nutshell v4

SA CD

Comparator Simulated SUT

Logger

TE: Refactored Test Case
(Instrumented)

TTCN-3 Test System

SACD

Fig. 2. Architectural overview of the validation approach: two test systems
running the original and the refactored test cases (both of which are instru-
mented) are connected to two independent simulated SUTs; the simulated
SUTs are connected to a comparator; both the simulated SUTs and the
comparator are connected to a logger.

behavior of the test case. It is not to be confused with
the Test Logging Interface (TLI) as defined in the TTCN-3
standards [25]. The standard TLI can be used to provide an
additional logging layer, but cannot fulfill all the needs of the
presented approach.

Figure 2 depicts an architectural overview of the approach.
The approach builds around the standard TTCN-3 test system
architecture. Two test systems running the original and the
refactored test cases (both of which are instrumented) are
taken and connected to two independent simulated SUTs.
The illustration of the test systems features only the relevant
functional entities: the Test Executable (TE) which runs the
TTCN-3 test cases, the Codec (CD) which provides encoding
and decoding functionalities for the transformation of TTCN-3
data to and from SUT compatible data, and the System Adapter
(SA) which implements the base means of communication
between the TE and the SUT. The simulated SUTs are then
connected to a comparison entity, or a comparator. It takes
care of comparison and synchronization of the SUTs. In case
behavior alignment is necessary, the comparator also mediates
the directed control between the simulated SUTs. Finally, both
the simulated SUTs and the comparator are connected to the
logging entity, or the logger, and provide logging information
for post-validation analysis over their logging interfaces.

IV. IMPLEMENTATION

Other tools already provide bisimulation implementations,
for example the Construction and Analysis of Distributed Pro-
cesses (CADP) [26][27] toolbox. However, no tool currently
supports TTCN-3 directly, meaning that the relevant behavior
representations still need to be extracted and transformed
into suitable input for these tools. Thus, complete behavior
representations are still necessary. Furthermore, the tools also
impose certain limitations on their input and lack specific
functionalities that are, needed, for example, in order to make
behavior alignment possible. This makes them less suitable for
the needs of this project.

The approach has been prototypically implemented to test
and validate its applicability. Its implementation builds upon
existing tools for TTCN-3. The conceptual entities for in-
strumentation, simulation, comparison and logging have been



implemented as standalone distributed tools for flexibility. This
design enables the distributed application of the approach
for improved efficiency. The instrumentation tool builds upon
the infrastructure provided by the TTCN-3 Refactoring and
Metrics Tool (TRex) [2][3]. The simulation tool consists of a
test system adapter as a bridge between the simulated SUT
and the test system running the test case, a simulation client
and a simulation server. While the approach covers most of
the relevant features of TTCN-3, its implementation of the
instrumentation and the simulation currently covers a subset
of the language and currently implements only a part of the
approach, as described in detail in [28][29]. It aims to cover
the basic TTCN-3 features necessary to run a simple test
case. Although sufficient for the validation of most refactorings
applied to simpler test cases, support for the advanced features
of TTCN-3 needs to be realized to enable the simulation of
real TTCN-3 test cases that utilize most of these advanced
features.

V. RESULTS

Several case studies were conducted to evaluate the ap-
plicability of the approach. The case studies concentrated
on validating the behavior equivalence (or lack thereof) of
individual refactorings applied to custom designed test cases,
rather than large scale application of refactorings to existing
publicly available test suites. There are several reasons for his:

• At this stage, it has been more interesting to study the
application of different types of refactorings in detail,
rather than obtaining statistical knowledge over applying
the same refactoring multiple times.

• As mentioned in Section IV, the prototypical implemen-
tation supports only the basic features of TTCN-3 to
enable the validation of simple test cases. Industrial-size
test suites utilize many of the more advanced features,
which are not immediately relevant for refactorings or the
validation approach as it is, however, they are necessary
for the proper execution and simulation of the test cases.
This will be subject to change in the implementation.

The case studies were based on detecting the correct and
incorrect application of six common TTCN-3 refactorings:
Extract Altstep, Replace Altstep with Default, Replace Tem-
plate with Modified Template, Parametrize Template, Pre-
fix Imported Declarations, and Extract Function, all taken
from [2]. The case studies have been systematically analyzed
and documented in [28], in terms of possible issues that may
occur if the particular refactoring is applied incorrectly, how
would these issues manifest themselves, and how would the
implementation of the proposed approach handle these issues.

The prototypical implementation of the approach was able
to successfully identify direct changes to the observable be-
havior resulting from various errors that can be made when
a refactoring is applied. General causes for unintentional
changes in the behavior include failure to pass the correct
parameters and/or set the proper parameter passing modes
when extracting code segments, or failure to notice differences
in code parts that are to be extracted. More specific causes are

related to the usage context of certain refactorings, as well
as to the domain of TTCN-3. Incorrectly applied refactorings
can cause changes ranging in severity from hard to notice data-
integrity corruption to major control flow changes. Changes to
the observable behavior resulting from these causes include the
introduction of new events (and the corresponding branches),
removed events (missing branches), changed message contents
and changed test verdicts. In cases where a new event occurred
deep in the behavior representation tree structure, behavior
alignment was successfully applied to identify and localize
the cause.

The case studies demonstrated that the approach and its im-
plementation were able to deal with the state-space explosion
problem for the sample test cases used. To achieve complete
coverage, the implementation executed the test cases over and
over, until all the behaviors that can be externally induced
and observed were covered. However, only the data necessary
for the validation of the current execution is necessary at any
point during the validation process. This helps to manage
the state-space explosion in that no complete representation
of the observable behavior is necessary for the validation of
behavior preservation. The demands are then arguably shifted
from the space domain to the execution time domain. Given
that execution of test cases is necessary for the collection of
the data necessary to produce the behavior representations in
the given context anyway, the required time for the validation
of a refactored test case was approximately the same as the
time required to cover all the behaviors that can be externally
induced and observed, with only marginal increase due to the
comparison steps.

A major observation is that the approach presented is useful
for the detection of immediate changes to the observable
behavior, that can be directly observed in a test case at its
development state during the validation.

VI. CONCLUSION AND FUTURE WORK

In this paper, an approach for the validation of refactored
TTCN-3 test cases is presented. The approach uses equivalence
checking and is loosely based on bisimulation. To circumvent
the state-space explosion problem, it is applied on-the-fly to
two simultaneously executing test cases. The approach has
been proven useful for the detection of immediate changes to
the observable behavior of test cases by means of a sample
case study.

The application scope of the approach can also expand to
more generic scenarios, such as detecting whether a given
change was just a behavior preserving optimization or refac-
toring or rather a bugfix or a new feature. Another alternative
application scenario might involve the comparison of different
TTCN-3 execution environments which are running the same
test case, to validate that the execution environments are
interchangeable in the context of the given test case. The latter
is an issue for tools implementing the TTCN-3 standard.

While the methodology supports most of the relevant
TTCN-3 features, the implementation of the approach is still
at the prototype level. Thus, the effectiveness of the approach



on larger test cases, e.g. huge standardized TTCN-3 test suites,
remains to be studied, once support for advanced TTCN-3 fea-
tures used by these test suites is provided in the implementa-
tion. Therefore, the extension of the implementation to support
these advanced TTCN-3 constructs and features is of particular
importance. Also, only a subset of the available refactorings
has been studied. The analysis of other refactorings, as well
as larger data sets, may provide further insights.

Other future considerations include partial and in-place
validation, capture and replay features, and partial ordering
of events, to name a few. Partial and in-place validation
could be used to isolate the refactored areas and validate only
the relevant contexts. Capture and replay features may prove
very useful for quick re-validation of particular scenarios of
interest, exact reproduction of a particular execution, or offline
validation. Partial ordering of events is a minor enhancement
that may be of interest in some application contexts, such as
testing shared media. Such an enhancement, however, may
also require a revision of the currently utilized notion of
equivalence.

Another point of interest may be providing performance and
overhead measurements. However, such measurements will
hardly be generally applicable and will only provide relative
data. The expectation is that they are strongly dependent upon
the complexity of the data and the test configuration, as well
as on the behavior of the individual test components and on
the operational environment.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[2] B. Zeiss, “A Refactoring Tool for TTCN-3,” Master’s thesis, Institute for
Informatics, ZFI-BM-2006-05, ISSN 1612-6793, Center for Informatics,
University of Göttingen, Mar. 2006.

[3] H. Neukirchen, B. Zeiss, J. Grabowski, P. Baker, and D. Evans, “Quality
assurance for TTCN-3 test specifications,” Software Testing, Verification
and Reliability (STVR), vol. 18, no. 2, pp. 71–97, Jun. 2008.

[4] T. Mens, S. Demeyer, B. D. Bois, H. Stenten, and P. V. Gorp, “Refactor-
ing: Current research and future trends,” Electr. Notes Theor. Comput.
Sci, vol. 82, no. 3, 2003.

[5] W. F. Opdyke, “Refactoring Object-Oriented Frameworks,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, Urbana-
Champaign, IL, USA, 1992. [Online]. Available: citeseer.ist.psu.edu/
article/opdyke92refactoring.html

[6] D. B. Roberts, “Practical Analysis for Refactoring,” Ph.D. dissertation,
University of Illinois, 1999.

[7] G. Snelting and F. Tip, “Reengineering Class Hierarchies Using
Concept Analysis,” IBM T.J. Watson Research Center, IBM T.J. Watson
Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA,
Tech. Rep. RC 21164(94592)24APR97, 1997. [Online]. Available:
citeseer.ist.psu.edu/snelting98reengineering.html

[8] M. L. Cornélio, “Refactorings as Formal Refinements,” Ph.D. disserta-
tion, Universidade Federal de Pernambuco, Brasil, Mar. 2004.

[9] L. A. Tokuda, “Evolving Object-Oriented Designs with Refactorings,”
Ph.D. dissertation, University of Texas at Austin, 1999.

[10] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok, “Refactoring
Test Code,” in Proceedings of the 2nd International Conference on
Extreme Programming and Flexible Processes in Software Engineering
(XP2001), M. Marchesi and G. Succi, Eds., May 2001.

[11] H. Neukirchen, “Re-Usability in Testing,” Presentation, TAROT Summer
School 2005 at the Institut National des Télécommunications, Paris, Jun.
2005.

[12] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, and J. Srba, Reactive Systems:
Modelling, Specification and Verification. New York, NY, USA:
Cambridge University Press, 2007.

[13] R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes in
Computer Science (LNCS). Springer, 1980, vol. 92.

[14] ——, Communicating and mobile systems: the π-calculus. New York,
NY, USA: Cambridge University Press, 1999.

[15] D. Park, “Concurrency and Automata on Infinite Sequences,” in Theoret-
ical Computer Science, 5th GI-Conference, Karlsruhe, Germany, March
23-25, 1981, Proceedings, ser. Lecture Notes in Computer Science
(LNCS), P. Deussen, Ed., vol. 104. Springer, 1981, pp. 167–183.

[16] ETSI, “European Standard (ES) 201 873-1 V3.4.1 (2005-08): The
Testing and Test Control Notation version 3; Part 1: TTCN-3 Core
Language,” European Telecommunications Standards Institute (ETSI),
Sophia-Antipolis, France, also published as ITU-T Recommenda-
tion Z.140, 2008.

[17] C. Willcock, T. Deiß, S. Tobies, S. Keil, F. Engler, and S. Schulz, An
Introduction to TTCN-3. John Wiley & Sons, Ltd, 2005.

[18] “Danet TTCN-3 Toolbox,” http://www.danet.com/en/it-services/testing/,
[18 April 2009].

[19] “Elvior MessageMagic,” http://www.elvior.ee/messagemagic, [18 April
2009].

[20] “Métodos y Tecnologı́a Exhaustif/TTCN,” http://www.mtp.es/content/
view/114/146/lang,en/, [18 April 2009].

[21] “OpenTTCN Oy OpenTTCN Tester for TTCN-3,” http://www.openttcn.
com/products/tester, [18 April 2009].

[22] “Telelogic Tester,” http://www.telelogic.com/products/tester/index.cfm,
[18 April 2009].

[23] “Testing Technologies TTworkbench,” http://www.testingtech.com/
products/ttworkbench.php, [18 April 2009].

[24] J. Philipps and B. Rumpe, “Roots of Refactoring,” in Tenth OOPSLA
Workshop on Behavioral Semantics. Tampa Bay, Florida, USA, October
15, 2001., K. Baclavski and H. Kilov, Eds. Northeastern University,
2001.

[25] ETSI, “European Standard (ES) 201 873-6 V3.4.1 (2005-08): The
Testing and Test Control Notation version 3; Part 6: TTCN-3 Test
Control Interface,” European Telecommunications Standards Institute
(ETSI), Sophia-Antipolis, France, also published as ITU-T Recommen-
dation Z.145, 2008.

[26] H. Garavel, R. Mateescu, F. Lang, and W. Serwe, “CADP 2006: A
Toolbox for the Construction and Analysis of Distributed Processes,”
in Computer Aided Verification, Berlin, Germany, July 3-7, 2007,
Proceedings, ser. Lecture Notes in Computer Science (LNCS), W. Damm
and H. Hermanns, Eds., vol. 4590. Springer, 2007, pp. 158–163.

[27] INRIA/VASY, “Construction and Analysis of Distributed Processes
(CADP) Home Page,” http://www.inrialpes.fr/vasy/cadp/.

[28] P. Makedonski, “Equivalence Checking of TTCN-3 Test Case Beha-
vior,” Master’s thesis, Institute for Informatics, ZFI-MSC-2008-16, ISSN
1612-6793, Center for Informatics, University of Göttingen, Nov. 2008.

[29] ——, “Code Instrumentation for the Equivalence Checking of TTCN-
3 Test Case Behavior,” Institute for Computer Science, Georg-August-
University of Göttingen, Tech. Rep., 2008.


