
Towards an Integrated Quality Assessment and
Improvement Approach for UML Models

Akhtar Ali Jalbani1, Jens Grabowski1,
Helmut Neukirchen2, and Benjamin Zeiss1

1 Institute for Computer Science, University of Göttingen
Goldschmidt Str. 7, 37077 Göttingen, Germany

{ajalbani,grabowski,zeiss}@informatik.uni-goettingen.de

2 Faculty of Industrial Engineering, Mechanical Engineering and Computer Science
University of Iceland, Dunhagi 5, 107 Reykjav́ık, Iceland

helmut@hi.is

Abstract. Models defined using the Unified Modeling Language (UML)
are nowadays common parts of software documentations, specifications
and sometimes even implementations. However, there is a broad variety
of how UML is used. Reasons can be found, for example, in the lack of
generally accepted modeling norms and guidelines, the semi-formal se-
mantics of UML, or the complexity of the language. In practice, these fac-
tors inevitably lead to quality problems in UML models that need to be
addressed. We investigate and discuss existing work in the field of quality
assessment and improvement of UML models and present how we envi-
sion an integrated approach to quality assessment and improvement of
UML models. We assess a model with a Factor-Criteria-Metrics (FCM)
based quality model, detect issues by finding smells and violated met-
ric thresholds in UML models, and improve UML models by applying
refactorings using model-to-model transformations.

1 Introduction

Quality control for a software development process requires ongoing quality as-
surance measures for all artifacts produced during the development process.
Assessing the quality of artifacts produced in early phases of a process, such as
requirement or design specifications, is critical since a change in these specifi-
cations often implies change in documents, specifications, or code (during later
development phases) as well. The Unified Modeling Language (UML) from the
Object Management Group (OMG) has been widely adopted as a common mod-
eling language for the creation of requirements and design specifications. In later
stages of development, UML models may also serve as a base for code and test
generation. Unfortunately, there is a wide variety of how UML is used in practice.
This is often due to the lack of generally accepted modeling norms and guide-
lines, the semi-formal semantics of UML and the complexity of UML as a whole.

2 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

In practice, these factors inevitably lead to quality problems in UML models
that need to be addressed. Therefore, continuous tool-supported quality assur-
ance and quality improvement measures, throughout the whole development
process, are required. Based on our experience [1, 2] with the quality engineering
of large test specifications written in the standardized Testing and Test Control
Notation (TTCN-3), we started to investigate the possibility of using similar
techniques for the quality engineering of UML models. Our quality engineering
approach for TTCN-3 specifications is based on:

– a quality model for test specifications that defines the main quality charac-
teristics of a test specification,

– test metrics to assess the quality characteristics,
– smell detection for identifying problematic locations in the test code using

pattern-based analysis and metric thresholds, and
– refactoring for the improvement of those problematic locations.

While TTCN-3 from its appearance is comparable to a typical general purpose
programming language like C or Java, the challenges to adopt this approach
for UML are numerous. As already mentioned, the usage and actual knowledge
about UML is very diverse. It is not unusual that people mistake UML as a
standardized way to draw diagrams, rather than understanding it as a modelling
language, that uses diagrams for partial presentations of the model. This variety
of how UML is perceived differently by the people using it, eventually has an
effect on what UML specifications look like, how they can be used later on, and
also how quality engineering must be implemented for UML specifications. The
contribution of this paper is a survey on the topics quality models, metrics, bad
smells, and refactoring for UML models. The papers investigated in the survey
are selected to cover those topics that are related to our proposed approach for
UML quality assurance.

This paper is structured as follows: in Section 2, we introduce the foundations
of this paper, i.e., the basics of UML, quality models, metrics, bad smells, and
refactoring. Sections 3–6 present existing work on the respective topics. Section
7 outlines current tool support for metrics, smell detection, and refactoring for
UML. In Section 8, we present our ideas for an integrated quality engineering ap-
proach for UML. We conclude with Section 9, where we summarize our progress
towards the realization of our ideas and we discuss what topics still need to be
addressed.

2 Foundations

In this section, we briefly provide the foundations of the topics that are rele-
vant for this paper — the Unified Modeling Language (UML), quality models,
metrics, bad smells, and refactoring. Section 2.1 is of particular importance as it
also attempts to address common misunderstandings and misconceptions about
UML, e.g., what the UML architecture is about and what kinds of notations
exist for UML models.

3

M3: MOF

M2: UML Metamodel

M1: UML Model

M0: UML Model Instance

Instance of

Instance of

Instance of

Fig. 1. The UML Architecture

2.1 The Unified Modeling Language (UML)

We assume basic knowledge of UML and therefore we concentrate on facts that
may not be immediately apparent to everyone who has not dealt with UML as a
modelling language. The UML architecture is composed of four layers (Figure 1).
The M3 layer, the foundation of UML, is called the Meta-Object Facility (MOF)
[3]. OMG itself describes MOF as a metadata management framework and meta-
data services. In essence, MOF is a language that is used to model itself as well
as other models or metamodels. In the context of UML, the most prominent
use of MOF is the definition of the UML metamodel (the M2 layer). MOF can
be considered a meta-metamodel in this case. A distinction is made between
Essential MOF (EMOF) and Complete MOF (CMOF). As the names suggest,
EMOF is a slimmed down version, a subset of CMOF. MOF is used to specify
the UML metamodel that consists of the Infrastructure [4] and Superstructure
[5] standards. These standards define the abstract syntax of the language, i.e.,
basic UML modeling concepts, attributes, relationships, as well as the semantics
of each modeling concept. In the language definition, the cohesion between the
Infrastructure definition and MOF is more complex, as MOF is again defined
using UML. The M1 layer is again an instance of the M2 layer. On the M1 layer,
we find those models that we typically create for requirements or design speci-
fications. The instance of a UML model is then finally found on the M0 layer,
which describes instantiated objects.

The UML models we deal with everyday are typically the ones found on
the M1 layer — we create instances of the UML metamodel. One common way
to create such a model is to use the graphical notation provided in the UML
Superstructure standard. However, it is crucial to understand that a UML model
and a UML diagram are different things. It is easily possible to draw a set of
diagrams in the UML notation on paper. However, on paper these cannot be
validated, transformed, or even used for code generation. Even if we transfer
our diagrams as they are into digital form, they are missing important pieces of

4 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

information that are not part of the diagrams such as how the diagrams relate
to each other and where the definitions to model references can be found. If
the graphical notation is used to create a UML model (i.e., by using a UML
tool), each diagram represents only a partial view of the complete model. Thus,
a UML model may be described by multiple diagrams or no diagram at all
— a UML model may still contain all elements we know from the commonly
used graphical notation without including a single diagram. However, there is
no common and unified notation that can represent a UML model completely,
but attempts to solve this problem exist, e.g, TextUML [6]. One way, although
not entirely human-readable, to represent a complete UML model is the XML
Metadata Interchange (XMI) format [7] which is, however, an exchange format
rather than a useful notation for modeling.

To illustrate the difference between a model and diagrams, we present a
simple specification of a weather information system in Figure 2. At the top
of the figure, we have the graphical notation of a UML model consisting of a
class and a sequence diagram. At the bottom part of the figure, we present
the XMI notation of the same model. The figure illustrates two things. First,
a complete model can represent multiple diagrams and vice versa — multiple
diagrams may be part of a single UML model. In this case, the model contains
the definitions from the class diagram and the sequence diagram. Second, the
XMI representation explicitly references the previously defined UML classes.
Such an explicit reference is not possible when we deal with diagrams in UML
notation (that are created using pencil and paper or a diagramming tool) rather
than UML models. Finally, it is necessary to mention the Object Constraint
Language (OCL) [8]. OCL is a declarative language used to express constraints
(preconditions, postconditions, or invariants) on UML models and is based on
first-order predicate logic. Although not its intended use, it is also possible to
use OCL as a query language by evaluating result sets of OCL expressions.

2.2 Software Quality and Quality Models

Software quality refers to all attributes of a software product that show the
appropriateness of the product to fulfill its requirements. For a software prod-
uct, Fenton et al. [9] distinguish between attributes of processes, resources, and
products. For each class, internal and external attributes can be distinguished.
External attributes refer to how a process, a resource, or a product relates to its
environment. Internal attributes, on the other hand, are properties of a process,
a resource, or a product on its own, i.e. separate from any interactions with
its environment. Hence, the assessment of external attributes of a product, the
so-called external quality, requires the execution of the product, whereas usually
static analysis is used for the assessment of its internal attributes, the so-called
internal quality. Since this article treats quality characteristics for UML models,
which are products that do not need to be executable, only internal quality is
considered in the following.

Quality models are used to assess software quality. Our work concentrates on
hierarchical Factor-Criteria-Metrics quality models (FCM-models). Prominent

5

<packagedElement xmi:type="uml:Class" xmi:id="C1" name="Location">
<ownedAttribute xmi:id="A1" name="cityName" visibility="private">

</ownedAttribute>
<ownedAttribute xmi:id="assEndC2" name="temp" visibility="private" type="C2" association="Association1">

<upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="littempUperValue" name="" value="1"/>
<lowerValue xmi:type="uml:LiteralInteger" xmi:id="littempLowerValue" name="" value="1"/>

</ownedAttribute>
<ownedOperation xmi:id="M1" name="getLocation" visibility="public"/>

</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="C2" name="WeatherConrolSystem">

<ownedAttribute xmi:id="assEndC1" name="loc" visibility="private" type="C1" association="Association1">
<upperValue xmi:type="uml:LiteralUnlimitedNatural" xmi:id="litlocUperValue" name="" value="*"/>
<lowerValue xmi:type="uml:LiteralInteger" xmi:id="litlocLowerValue" name="" value="1"/>

</ownedAttribute>
<ownedOperation xmi:id="M2" name="displayTemp" visibility="public">

<ownedParameter xmi:id="P1" name="cityName" visibility="public">
</ownedParameter>

</ownedOperation>
</packagedElement>
<packagedElement xmi:type="uml:Association" xmi:id="Association1" name="result" memberEnd="assEndC1 assEndC2"/>

<packagedElement xmi:type="uml:Collaboration" xmi:id="collob1" name="WCS">
<ownedBehavior xmi:type="uml:Interaction" xmi:id="Interaction1" name="WCS">

<ownedAttribute xmi:id="Obj1" name="" visibility="private" type="C1"/>
<ownedAttribute xmi:id="Obj2" name="" visibility="private" type="C2"/>
<lifeline xmi:id="l1" name="" visibility="public" represents="Obj1" coveredBy="MO3 MO2 MO2Start MO2Finish"/>
<lifeline xmi:id="l2" name="" visibility="public" represents="Obj2" coveredBy="MO1 MO5 MO6 MO4 MO4Start MO4Finish MO6Start MO6Finish"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO1" name="" visibility="public" covered="l2" message="SM1"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO2" name="" visibility="public" covered="l1" event="Event1" message="SM1"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="MO2Start" covered="l1" start="MO2" finish="MO2Finish"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="MO2Finish" covered="l1" execution="MO2Start"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO3" name="" visibility="public" covered="l1" event="Event2" message="SM2"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO4" name="" visibility="public" covered="l2" message="SM2"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="MO4Start" covered="l2" start="MO4" finish="MO4Finish"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="MO4Finish" covered="l2" execution="MO4Start"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO5" name="" visibility="public" covered="l2" message="SM3"/>
<fragment xmi:type="uml:MessageOccurrenceSpecification" xmi:id="MO6" name="" visibility="public" covered="l2" event="Event3" message="SM3"/>
<fragment xmi:type="uml:BehaviorExecutionSpecification" xmi:id="MO6Start" covered="l2" start="MO6" finish="MO6Finish"/>
<fragment xmi:type="uml:ExecutionOccurrenceSpecification" xmi:id="MO6Finish" covered="l2" execution="MO6Start"/>
<message xmi:id="SM1" name="" visibility="public" receiveEvent="MO2" sendEvent="MO1"/>
<message xmi:id="SM2" name="cityName" visibility="public" messageSort="reply" receiveEvent="MO4" sendEvent="MO3"/>
<message xmi:id="SM3" name="" visibility="public" receiveEvent="MO6" sendEvent="MO5">
</message>

</ownedBehavior>
</packagedElement>

</uml:Model>
</xmi:XMI>

<?xml version="1.0" encoding="UTF-8"?>
<uml:Model xmi:id="M1" name="Data">

Fig. 2. Graphical and XMI Representation of a UML Model

6 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

examples for FCM-models are the quality model developed by McCall et al.
(McCall-model) [10] and the ISO/IEC standard 9126 (ISO/IEC 9126-model)
[11].

The highest level of the McCall-model are the three uses: operation, transi-
tion and maintenance. The operation use refers to quality characteristics that
concern the product when it is being executed, i.e., its external quality. The
transition use combines quality characteristics that concern the product when it
is moved to another environment, and the maintenance use focuses on quality
characteristics that concern the product when it is changed. As indicated by
the abbreviation FCM, on the second, third and fourth level, the McCall model
defines factors, criteria and metrics. A factor defines a high-level quality crite-
rion such as efficiency. On the next lower level, criteria for judging factors are
defined. For example, criteria for the factor efficiency are storage and execution
efficiency. Metrics are then used to assess criteria, e.g., storage efficiency may be
assessed by calculating the ratio between allocated and used storage.

The ISO/IEC 9126-model defines no uses, but distinguishes between internal
quality, external quality and quality-in-use. The quality ISO/IEC 9126-model is
a generic quality model that covers internal and external quality in one abstract
model (Figure 3). The model for quality-in-use is similar to the operation use of
the McCall model. However, quality-in-use and external quality are out of the
scope of this paper and therefore not discussed any further. In the ISO/IEC 9126-
model, factors are called characteristics and criteria are called subcharacteristics.

External and Internal
Quality

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability

Accuracy

Interoperability

Security

Functionality
Compliance

Maturity

Fault Tolerance

Recoverability

Reliability
Compliance

Understand-
ability

Learnability

Operability

Attractiveness

Usability
Compliance

Time Behaviour

Resource
Utilisation

Efficiency
Compliance

Analysability

Changeability

Stability

Testability

Maintainability
Compliance

Adaptability

Installability

Co-Existence

Replaceability

Portability
Compliance

Ch
ar

ac
te

ris
tic

s
Su

bc
ha

ra
ct

er
is

tic
s

Fig. 3. ISO/IEC 9126 Quality Model for Internal and External Quality

7

2.3 Software Metrics

Fenton et al. structured internal product metrics, i.e., metrics that measure inter-
nal quality, into size and structural metrics [9]. Size metrics measure properties
of the number of usage of programming or specification language constructs, e.g.,
the number of source statements. Structural metrics analyze the structure of a
program or specification. Popular examples of structural metrics are complexity
metrics based on control flow or coupling metrics.

To make sure that reasonable metrics for quality assessment are chosen, Basili
et al. suggest the Goal, Question and Metrics (GQM) approach [12]: First, the
goals which shall be achieved (e.g., improve maintainability) must be defined.
Then, for each goal, a set of meaningful questions that characterize a goal is
derived. The answers to these questions determine whether a goal has been met
or not. Finally, one or more metrics are defined to gather quantitative data which
can provide answers to each question.3

2.4 Smells

The metaphor of “bad smells in code” has been coined by Beck and Fowler [13].
They define smells as “certain structures in the code that suggest (sometimes they
scream for) the possibility of refactoring”. According to this definition, defects
with respect to program logic, syntax, or static semantics are not smells since
these defects cannot be removed by a refactoring. A refactoring only improves
internal structure, but does not change observable behaviour.

Beck and Fowler present smells for Java source code. They describe their
smells using unstructured English text. A well-known smell is Duplicated Code.
Code duplication affects in particular the changeability quality subcharacteristic
in the ISO/IEC 9126-model: if code that is duplicated needs to be modified,
it usually needs to be changed in all duplicated locations. Smells provide only
hints: whether the occurrence of an instance of a certain smell in a source code
is considered as a sign of low quality may depend on preferences and the context
of a project. For the same reason, a list containing code structures that are
considered smells is never complete and may also vary from project to project
and from domain to domain [14].

The notions of metrics and smells are not disjoint: each smell can be turned
into a metric by counting the occurrences of a smell, and often, a metric can be
used to locate a smell. The latter is the case, for example, when a long function
is expressed by a metric that counts the lines of code of this function and a
threshold is violated. However, the above smell of duplicated code and other
pathological structures in code require a pattern-based detection approach and
cannot be identified by using metrics alone.

3 The GQM approach can also be used to define individual FCM quality models as
goals are similar to factors and questions similar to criteria.

8 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

2.5 Refactoring

Refactoring is defined as “a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its observ-
able behavior” [13]. This means that refactoring is a remedy against software
aging [15]. While refactoring can be regarded as cleaning up source code, it is
more systematical and thus less error prone than arbitrary code clean-up, be-
cause each refactoring provides a checklist of small and simple transformation
steps, which are often automated by tools.

The essence of most refactorings is independent from a specific programming
language. However, a number of refactorings make use of particular constructs
of a programming language, or of a programming paradigm in general, and are
thus only applicable to source code written in that language.

3 Quality Models for UML

A surprisingly small number of researchers have addressed the problem of quality
assessment for UML models. The comprehensive work in this area has been done
by Lange and Chaudron [16, 17]. In [17], they discuss the difference between
source code and UML models and highlight the particularities of UML models.
As a consequence, a special quality model for UML has been developed (in the
following called Lange-Chaudron-model). An overall view of the model is given
in Figure 4.

Like the model developed by McCall, the Lange-Chaudron-model is a hierar-
chical model with four levels. On the highest level, the Lange-Chaudron-model
defines the two uses maintenance and development. The maintenance use is
taken from the McCall model. The other two uses from McCall, i.e., operation
and transition, are not relevant for the quality of UML models. The operation
use is related to external quality attributes and the transition use is not related
to the development phases in which UML is used, i.e., modeling and design
phases. The development use combines quality characteristics of a product and
its artifacts in phases before the product is finished. The second level of the
Lange-Chaudron-model defines the purposes of modeling. For example, the pur-
pose Testing indicates that the model is used for test generation and the purpose
Code Generation denotes a usage for automatic code generation. The third level
of the Lange-Chaudron-model identifies the characteristics of the purposes. The
meaning of most characteristics in Figure 4 is straightforward. For example, the
characteristic complexity measures the effort required to understand a model or
a system.

Two special characteristics of the Lange-Chaudron-model are aesthetics and
balance. The quality of the graphical diagrams is addressed by the aesthetics
characteristic only. Aesthetics is defined by the extent that the graphical layout
of a model or system enables ease of understanding of the described system.
Lange and Chaudron define balance as the extent that all parts of a system
are described at an equal degree. All characteristics are included in the balance

9

Maintenance

Development

Modification

Testing

Comprehension

Communication

Analysis

Prediction

Implementation

Code Generation

Communicativeness

Correspondence

Self-
Descriptiveness

Conciseness

Precision

Aesthetics

Detailedness

Consistency

Complexity

Balance

Modularity

Completeness

Primary Use Purpose Characteristic

Fig. 4. Lange-Chaudron Quality Model

characteristic with the same weight. This has been criticized by Mohagheghi and
Aagedal [18], because the assessment of the balance characteristic requires the
evaluation of all metrics and rules defined in the fourth level, i.e., it is not a good
abstraction. In [18], it is proposed to shift balance to the purpose level and to
assess balance by using the characteristics completeness, conciseness, modularity,
and self-descriptiveness.

The fourth level of the Lange-Chaudron-model (not shown in Figure 4) de-
fines metrics and rules for the assessment of the characteristics. We discuss this
part of Lange-Chaudron-model in the sections 4 and 5. Lange and Chaudron un-
derpinned their work with industrial case studies. They showed the applicability
of their approach by interviewing representatives of project teams, analyzing
UML models, and giving feedback to project teams. A quality model for de-
sign documentation in model-centric domains has been developed by Pareto and
Boquist [19]. The background of this work is experience with the Rational Uni-
fied Process (RUP) as model-centric software development process. Even though

10 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

UML is an essential part of RUP, all kinds of artifacts on the abstraction levels
between requirements specification and code are considered relevant. For the de-
velopment of the quality model, Pareto and Boquist interviewed and discussed
with designers, process engineers, line managers and architects. From these in-
terviews and discussions, 22 quality attributes were identified and structured
into six groups. Each group identified one quality characteristic. As the qual-
ity model is related to RUP also quality aspects for management are covered.
However, they stop with the identification of quality attributes and quality char-
acteristics. No means for the assessment of quality attributes and characteristics
are provided.

4 Metrics for UML

In current research, a large number new software metrics are defined. Many
metrics are based and calculated on grammatical structures such as Abstract
Syntax Trees (ASTs). A UML model is also based on a specific structure: the
UML metamodel. However, numerous proposals are based on informal metrics
definitions that often respect only diagrams, i.e., the graphical representation of
UML with its partial views. In the following sections, we will present noteworthy
literature on UML metrics. We differentiate between metrics that are based
on the actual UML model and metrics that are solely based on the graphical
notation, i.e., graphical metrics.

4.1 Model Metrics

Lange [20] uses metrics and rules (metrics with a binary result) and relates
them to quality characteristics of his quality model (see Section 3) to assess the
quality of a UML model. He reuses the most widely known metrics such as the
metric suite from Chidamber and Kemerer [21] and describes them informally.
He stresses that his list is by no means complete. Kim and Boldyreff [22] propose
27 metrics for UML that are supposed to predict characteristics at earlier stages
in the software lifecycle. The metrics are defined informally and no relationship
between the UML model quality and the metrics is established. Baroni et al. [23]
propose to use OCL to describe UML metrics in a formal way in order to avoid
ambiguities due to descriptions in natural language. By using several samples of
different complexity, they demonstrate that OCL is a well suited formalism for
defining UML metrics and that it is easier to understand than formulas using
custom built mathematical frameworks. McQuillan and Power [24] extended this
approach and use OCL to calculate coupling and cohesion metrics, as well as the
metrics from the Chidamber and Kemerer metric suite [21]. They argue, how-
ever, that a metrics specific metamodel is a more generic solution than defining
metrics directly over the UML metamodel. Furthermore, they demonstrate how
to automatically generate test data and metamodel instances. Another interest-
ing way to formalize metrics is proposed by El-Wakil et al. [25]. They propose
to define metrics using XQuery over the XMI representation of the UML model

11

under analysis. They argue that using XQuery to express metrics eases tool
building. Also, they claim that metric libraries specified in XQuery are easy to
extend and provide a proof-of-concept implementation.

4.2 Graphical Metrics

Graphical metrics for UML are not covered very well in the literature despite
the fact that the quantification of visual elements can be an important part to
assess the quality of a graphical layout. However, it seems that layouting itself
draws more attention in research than the assessment of a layout by numbers.
Kiewkanya and Muenchaisri [26] performed an experiment in which they eval-
uated whether metrics quantifying aesthetic aspects of class and sequence dia-
grams influence the maintainability of UML models. For the measurements, they
selected aesthetic indicators that have been proposed by Purchase [27], Eichel-
berger [28], and others. Such aesthetic indicators are, for example, the maximum
number of bends on the edges, the standard deviation of edge lengths, or the
total numbers of edges fixed to an orthogonal grid divided by the total number
of edges. Their conclusion is that aesthetic metrics can indeed be indicators for
the maintainability of class and sequence diagrams. Gronback [29] provides a
general catalog of UML metrics to detect deviations from best practices. Some
of them are derived from style guidelines provided by Ambler [30]. He suggests
generic diagram metrics such as “number of colors on diagram” or diagram-
specific metrics such as “depth of inheritance hierarchy” (for class diagrams)
and even provides minimum and maximum thresholds for his metrics. The met-
rics presented by Gronback, however, mix graphical properties with properties
that are part of the UML model.

5 Smells for UML

As discussed earlier, UML models do not have a standardized textual notation
like typical general purpose programming languages. However, bad smell analysis
in source code is rarely executed directly on the textual notation. An abstract
grammatical representation of the notation, the AST, can in fact be regarded as
a model for the textual notation of the programming language that is subject of
the analysis. Analyzing UML models is therefore not that much different than
analyzing an AST. However, the underlying abstract syntax is more complex. In
the following section, we present related work that deals with bad smells in UML
models. We differentiate between model smells and graphical smells. With model
smells, we regard design flaws or possible defects that we find by analyzing the
UML model (independently from any diagrams) such as possible inconsistencies,
ambiguities, or constructs that complicate maintenance. Graphical smells, on
the other hand, are related to the graphical notation of UML. They primarily
concern the understandability aspect of the diagram. For example, diagrams
with overlapping or crossing elements are harder to understand than diagrams
with elements that are properly laid out with aesthetic aspects in mind.

12 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

5.1 Model Smells

Lange [16] — with his goal to improve the overall quality of UML models —
discusses that undetected defects can cause large problems in later development
stages and identifies generic UML defects such as the number of messages in a
sequence diagram that do not correspond to a method in a defined class diagram.
The presented smells were identified by discussions with industrial partners and
by performing case studies. He assumes that a set of UML diagrams defines a
system as a whole and that those diagrams have consistency relationships be-
tween each other. The defects partially overlap with the well-formedness rules
and are related in their scope, but are described informally, without a relation-
ship to the abstract syntax of UML. Astels [31] presents UML smell detection
in the context of UML refactoring. With smell detection, he locates where to
refactor and which refactoring is suggested. He argues that the visual presen-
tation of UML makes smell structures more evident and presents exemplarily
what classical bad smells from Fowler [32] (e.g., lazy class or middle man) look
like in the graphical notation. His own statement is that his list is by no means
complete. His work is described informally in the visual notation of UML.

5.2 Graphical Smells

Graphical smells concern the graphical notation of UML models excluding prob-
lems that are of logical nature or that may introduce issues in efficiency or
maintenance. Therefore, the main aspect of graphical smells is how model ele-
ments are laid out and what elements are represented by the diagrams. Ambler
[30] provides more than 300 guidelines for all UML diagram types that primarily
concern the graphical notation. The violations of these guidelines can be con-
sidered as graphical smells. As an example, a guideline with the aim to improve
the understandability of a diagram is to split large diagrams with a high num-
ber of elements into multiple smaller diagrams, where no diagram must have
more than nine elements. Purchase et. al [27] have studied graphical layout aes-
thetics in class and collaboration diagrams. By performing a case study where
they questioned persons to investigate their subjective preferences, they conclude
that there are certain common aesthetic properties that seem to be unfavorable.
Among these properties are, for example, arc crossings, or orthogonality (for
class diagrams). From their results, they derive that the aesthetics of graph lay-
outs is dependent on the domain, i.e., properties that are important for one
diagram type may not be important for another one.

6 Refactorings for UML

UML refactoring is an emerging research topic that can already be considered
as important as classical source-code refactoring. We again differentiate between
model refactorings, i.e., semantically preserving model changes and graphical
refactorings that improve the aesthetics of UML diagrams.

13

6.1 Model Refactorings

Astels [31] presents UML smells in class and sequence diagrams and describes
a number of Fowler refactorings that are applicable to UML. His refactoring
descriptions are based on UML diagrams and are informal. His examples are in-
tended to motivate that UML refactoring is applicable in the context of agile de-
velopment processes. France and Bieman [33] want to avoid uncontrolled change
and increased evolution costs of a system due to deteriorating structure and
system quality by introducing a goal-directed, cyclic process for object-oriented
software when object-oriented models, such as UML models, are transformed
and evaluated in each cycle. For the model transformation, they explicitly men-
tion model refactoring to enhance quality attributes of the model that should
be realized using patterns involving roles, i.e., each participant in the pattern
plays a certain role with specific properties within the pattern description. A
formal method for pattern-based transformation with role models does not exist
yet. Sunyé et al. [34] propose refactorings for class diagrams and state charts
to make software easier to extend and maintain. Using pre and post conditions
expressed in OCL, they ensure that transformation preserve behavioral prop-
erties. However, they describe the refactoring mechanics informally. Porres [35]
presents how to describe and execute UML refactorings using a rule-based trans-
formation formalism and he argues that an update-based mapping mechanism
that modifies a model in place is more efficient for describing refactorings than
mapping transformations that transform into a different target model. For the
realization and description of refactoring transformations, he uses his own lan-
guage called SMW that operates on the UML metamodel — when the paper
was written, there were no widely adopted transformation languages available.
Dobrzański [36] provides a comprehensive survey on UML model refactorings in
his master’s thesis that deals with the refactoring of executable UML models
[37]. He introduces an initial refactoring catalog for executable UML models.
The refactorings are formalized with pre and post conditions in OCL. According
to him, the main difference in refactoring executable models is that the update
of the behavioral aspects of the models has to be taken into account.

More recent work on UML model refactoring and transformation is often
based on the Eclipse Modeling Framework (EMF) representation of UML mod-
els. Biermann et al. [38] present work on an EMF model transformation frame-
work that is based on graph transformations. They show how the rich theory of
algebraic graph transformation can be applied to EMF model transformations.
Using their method, the validation of the model transformations with respect to
functional behavior and correctness is possible. They demonstrate their approach
by using selected state chart refactorings. Similarly, Folli and Mens [39] suggest
the use of graph transformations for model refactoring as well and present, as a
proof-of-concept, how they have implemented a number of more complex UML
model refactorings using the AGG [40] graph transformation tool.

14 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

6.2 Graphical refactorings

Graphical refactorings are applied when the graphical notation of a UML model,
i.e., corresponding diagrams containing partial views of the UML model are hard
to read and understand. There are a huge variety of generic graph layout algo-
rithms, and graph drawing itself is a very active research topic. Summaries can
be found in a variety of textbooks, for example, Graph Drawing by Battista et
al. [41]. Work on layouts of UML diagrams is rare. Ambler [30] provides informal
guidelines that lack a systematic transformation mechanic to improve diagrams.
However, it is arguable whether graphical refactorings should only change parts
of a model using the refactoring mechanic or whether UML diagram specific
transformations for complete optimal layouts are more desirable. Eichelberger
and Gudenberg [28] discuss existing automatic layout methods for class diagrams
and present their approach to laying out class diagrams that respect aesthetic
rules, such as those described by [27]. Castello et al. [42] propose an automatic
layout algorithm that improves the readability of state chart diagrams. It reduces
the number of edge crossings and edge bends.

7 Tool Support

It is encouraged to use tools for measuring metrics, detecting smells, and apply-
ing refactorings to UML models. Manual application of refactorings, for exam-
ple, is very error-prone and there is a risk that the changes are not semantically
preserving due to human mistakes. Popular tools that support the automatic
calculation of metrics and detection of bad smells in UML models are SDMet-
rics [43], Together [44], IBM Rational Systems Developer [45], and ArgoUML
[46]. These tools partially use different terminologies for the term “bad smell”.
SDMetrics, for example, calls them design rules, Together calls them audits, or
ArgoUML names them design critics. The toolset from Chaudron et al. [47] cal-
culates metrics on UML models, it detects rules in sequence diagrams, it checks
model consistency, and visualizes metrics in a metric viewer. Except for the com-
mercial tool Poseidon for UML, which provides a refactoring browser supporting
the refactorings from Boger at al. [48], none of the major commercial UML
tools support refactoring beyond renaming and moving model elements. Tools
that support more sophisticated UML refactorings are academic prototypes. An
overview over existing academic UML refactoring tools is given by Dobrzański
[36]. Van Gorp et al. [49] have implemented refactorings as plug-in for the Fujaba
UML tool. Recently, several academic UML refactoring tools are evolving that
build on EMF, for example, GaliciaUML [50].

8 Our Approach

The variety in the understanding and application of UML is visible in research
as well. There is work dealing with UML diagrams only while neglecting the fact
that UML is a modeling language. On the other hand, others respect UML as

15

a modeling language or mix descriptions based on the graphical notation with
descriptions based on the UML metamodel. Most authors realize that there are
relationships and dependencies between different diagrams that have to be re-
spected when applying UML refactorings. To describe those relationships based
on diagrams, however, is the wrong approach and we strongly believe that met-
rics, smell detection, and refactoring for UML should be described in a formal-
ism that works on the UML metamodel. This ensures precision regarding the
actual underlying UML model and regards complete models rather than just
partial views. Authors such as [35] have realized this as well, but neither do
they present a complete quality engineering approach for UML models including
assessment and improvement that can be applied in every iteration of a develop-
ment process, nor were there any widely spread model transformation languages
available that could be applied for such uses. With our experience in the quality
assurance of TTCN-3 [2, 51], we aim to provide an integrated quality engineering
approach for UML (Figure 5) that consists of two main parts: quality assessment
and quality improvement. For the assessment, a quality model is used and met-
rics quantify quality characteristics of this model. For the improvement, smell
detection is used for locating possible issues and refactoring is used to improve
the quality. Once the improvement step is completed, a quality reassessment
quantifies whether the improvement was successful.

- FCM Quality Model+graphical quality aspects,

e.g Instantiation of ISO/IEC 9126 for UML

- Number of sequence diagram per usecase

- Number of statecharts per class

- Metrics+smells (metrics will provide location of issue)

- using Refactoring / transformation method

Quality Assessment

Quality Improvement

Quality Model for UML

Metrics for UML

Issue Detection

Issue Removal

Fig. 5. Quality Assessment and Quality Improvement for UML

The first part in Figure 5, i.e., the quality assessment requires a quality
model for UML. We aim to use a generic FCM-based quality model, such as
the ISO/IEC 9126 model, that can be instantiated with metrics to quantify its
quality characteristics. The quality model has to be described in detail for its
target environment, i.e., UML models and, if necessary, it must be adapted for
this domain. For example, the understandability characteristic of the ISO/IEC

16 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

9126 quality model does not only relate to the actual complexity of the UML
model, but also to the graphical aspects of UML, such as the graphical smells
described in Section 5.2. For the calculation of metrics, we use a widely used
formalism such as OCL that works on the UML metamodel. While OCL is a
language for expressing constraints in the first place, it can also be used to query
models and to evaluate set sizes. For the quality improvement, we further plan to
use languages that are now adopted for querying and transforming UML models.
For the smell detection, we plan to provide a guideline catalog of bad smells in
UML models using both an informal description in natural language and formal
descriptions, e.g., given in OCL, where metrics with additional thresholds are de-
fined to locate the smells. We are also evaluating the use of model transformation
languages to identify smell locations by transforming the UML model into an in-
stantiation of a metamodel that describes the results of the smell detection. For
the actual refactorings, we plan to use existing model-to-model transformation
languages such as Query/View/Transformation (QVT) [52], Xtend [53], or the
ATLAS Transformation Language (ATL) [54] to describe the refactoring trans-
formations, and OCL to define pre and post conditions for each refactoring. The
techniques and languages described above are all based on the analysis at the
model level instead of the graphical notation of UML. We plan to emphasize on
the actual model analysis instead of on the graphical problems, as the involved
layout techniques are part of a different field of research. However, graphical is-
sues do play an important role in the overall assessment of the quality of a UML
model — especially for the understandability quality characteristic. As we plan
to use existing languages as formalisms to describe our metrics, smells, and refac-
torings, a proof-of-concept implementation will only involve the application of
our metrics, smells, and refactoring descriptions to actual tool implementations
that exist.

9 Status and Future Work

In our current work, we have successfully applied OCL for the calculation of
metrics on a UML model and we have made first experiments to describe refac-
torings using Xtend. In both cases, we directly executed our experiments against
existing UML models with tools that implement these languages. For the eval-
uation of OCL, we used the Eclipse OCL implementation of the Eclipse Model
Development Tools project [55], which also allows the evaluation of the OCL
result sets. For the refactoring, we have implemented so far simple refactorings
using Xtend [53]. Our first experiments to detect smells and to apply refactoring
using model-to-model transformation languages were successful, however, de-
scribing model-to-model transformations for UML models is not always an easy
task due to the complexity of the UML metamodel. We plan to evaluate QVT
and ATL to find out whether they make these descriptions more compact or
more complicated and we also intend to evaluate the possibility of building a
refactoring toolkit that eases the definition of refactorings. For the validation of
our approach, we currently start to work on a case study that involves a UML

17

model similar in size to industrial models. We then plan to apply our combined
approach in an automated manner and use the quality reassessments after im-
provements to check whether the quality has improved. Expert reviews should
then validate whether the automatic reassessment is correct.

References

1. Neukirchen, H., Zeiss, B., Grabowski, J.: An Approach to Quality Engineering of
TTCN-3 Test Specifications. International Journal on Software Tools for Technol-
ogy Transfer (STTT) 105(4) (2008) 309–326

2. Neukirchen, H., Zeiss, B., Grabowski, J., Baker, P., Evans, D.: Quality Assurance
for TTCN-3 Test Specifications. Software Testing, Verification and Reliability
(STVR) 18(2) (2008)

3. Object Management Group (OMG): Meta Object Facility (MOF) Core Specifica-
tion, Version 2.0, formal/2006-01-01 (2009)

4. Object Management Group (OMG): UML Infrastructure Specification, Version
2.2, formal/2009-02-04 (2009)

5. Object Management Group (OMG): UML Superstructure Specification, Version
2.2, formal/2009-02-02 (2009)

6. Abstratt Technologies: TextUML Toolkit. http://www.abstratt.com, Last Visited
March 2009

7. Object Management Group (OMG): MOF 2.0/XMI Mapping, Version 2.1.1,
formal/2007-12-01 (2007)

8. Object Management Group (OMG): OCL Core Specification version 2.0,
formal/2006-05-01 (2009)

9. Fenton, N., Pfleeger, S.: Software Metrics: A Rigorous and Practical Approach.
PWS Publishing, Boston (1997)

10. McCall, J., Richards, P., Walters, G.: Factors in Software Quality. Technical
Report RADC TR-77-369, US Rome Air Development Center (1977)

11. International Organization for Standardization (ISO) / International Electrotech-
nical Commission (IEC): ISO/IEC Standard No. 9126. Software Engineering-
Product Quality; Part 1-4 (2001-2004)

12. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineer-
ing Data. IEEE Transactions on Software Engineering 10(6) (1984) 728–738

13. Fowler, M.: Refactoring – Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

14. van Emden, E., Moonen, L.: Java Quality Assurance by Detecting Code Smells.
In: Proceedings 9th Working Conference on Reverse Engineering (WCRE 2002),
IEEE (2002) 97–106

15. Parnas, D.: Software Aging. In: Proceedings of the 16th International Conference
on Software Engineering (ICSE), Sorrento, Italy, IEEE/ACM (1994) 279–287

16. Lange, C.: Assessing and Improving the Quality of Modeling. PhD thesis, Tech-
nische Universiteit Eindhoven, Netherland (2007)

17. Lange, C., Chaudron, R.: Managing Model Quality in UML-Based Software De-
velopment. In: Proceedings of the 13th IEEE International Workshop on Software
Technology and Engineering in Practice (STEP 2005), IEEE (2005)

18. Mohagheghi, P., Aagedal, J.: Evaluating Quality in Model-Driven Engineering. In:
Proceedings of the International Workshop on Modeling in Software Engineering
(MISE 2007), IEEE (2007)

18 A. A. Jalbani, J. Grabowski, H. Neukirchen, B. Zeiss

19. Pareto, L., Boquist, U.: A Quality Model for Design Documentation in Model-
Centric Projects. In: Proceedings of the 3rd International Workshop on Software
Quality Assurance (SOQUA 2006), ACM (2006)

20. Lange, C.: Improving the Quality of UML Models in Practice. In: Proceedings of
28th International Conference on Software Engineering (ICSE 2006), ACM (2006)

21. Chidamber, S.R., Kemerer, C.: A Metric Suite for Object-Oriented Design. IEEE
Transactions on Software Engineering 20(6) (1994) 476–493

22. Kim, H., Boldyreff, C.: Developing Software Metrics Applicable to UML Mod-
els. In: Proceedings of the 6th ECOOP Workshop on Quantitative Approaches in
Object-Oriented Engineering, Malaga, Spain. (2002)

23. Baroni, A., Braz, S., e Abreu, F.B.: Using OCL to Formalize Object-Oriented
Design Metrics Definitions. In: Proceedings of ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering, Spain, Springer (2002)

24. McQuillan, J., Power, J.: A Metamodel for the Measurement of Object-Oriented
Systems: An Analysis using Alloy. In: Proceedings of the 1st International Confer-
ence on Software Testing, Verification, and Validation (ICST 2008), IEEE (2008)

25. El-Wakil, M., El-Bastawisi, A., Riad, M.B., Fahmy, A.A.: A Novel Approach to
Formalize Object-Oriented Design Metrics. In: Proceedings of the 9th International
Conference on Empirical Assessment in Software Engineering. (2005)

26. Kiewkanya, M., Muenchaisri, P.: Measuring Maintainability in Early Phase using
Aesthetic Metrics. In: Proceedings of the 4th WSEAS International Conference on
Software Engineering, Parallel & Distributed Systems. (2005)

27. Purchase, H., Allder, J., Carrington, D.: Graph Layout Aesthetics in UML Di-
agrams: User Preferences. Journal of Graph Algorithms and Applications 6(3)
(2002) 255–279

28. Eichelberger, H., von Gudenberg, J.W.: UML Class Diagrams - State of the Art in
Layout Techniques. In: Proceedings of the International Workshop on Visualizing
Software for Understanding and Analysis, Amsterdam. (2003)

29. Gronback, R.: Model Validation: Applying Audits and Metrics to UML Mod-
els (2004) http://conferences.codegear.com/jp/article/32089, Last Visited
March 2009.

30. Ambler, S.: The Elements of UML 2.0 Style. Cambridge University Press (2005)
31. Astels, D.: Refactoring with UML. In: Proceedings of the 3rd International Con-

ference on eXtreme Programming and Flexible Processes in Software Engineering
(XP2002). (2002)

32. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
(1999)

33. France, R., Bieman, J.: Multi-View Software Evolution — A UML-based Frame-
work for Evolving Object-Oriented Software. In: Proceedings of 17th IEEE Inter-
national Conference on Software Maintenance (ICSM 2001), IEEE (2001)

34. Sunyé, G., Pollet, D., Traon, Y., Jézéquel, J.: Refactoring UML Models. In: Pro-
ceedings of the 4th International Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools. Volume 2185 of Lecture Notes in Com-
puter Science., Springer (2001)

35. Porres, I.: Model Refactorings as Rule-Based Update Transformations. In: UML
2003 - The Unified Modeling Language. Volume 2863 of Lecture Notes in Computer
Science., Springer (2003)

36. Dobrzański, L.: UML Model Refactoring- Support for Maintenance of Executable
UML Models. Master’s thesis, Blekinge Institute of Technology, School of Engi-
neering, Ronneby, Sweden (2005)

19

37. Mellor, S., Balcer, M.: Executable UML: A Foundation for Model-Driven Archi-
tecture. Addison-Wesley (2002)

38. Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Transfor-
mations by Graph Transformation. In: Model Driven Engineering Languages and
Systems. Volume 5301 of Lecture Notes in Computer Science., Springer (2008)

39. Folli, A., Mens, T.: Refactoring of UML models using AGG. In: Proceedings of
the 3rd International ERCIM Symposium on Software Evolution. (2007)

40. Taentzer, G.: A Graph Transformation Environment for Modeling and Validation
of Software. In: Applications of Graph Transformations with Industrial Relevance.
Volume 3062 of Lecture Notes in Computer Science., Springer (2004) 446–453

41. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing - Algorithms
for the Visualization of Graphs. Prentice-Hall (1998)

42. Castello, R., Mili, R., Tollis, I.: Automatic Layout of Statecharts. Software —
Practice & Experience 32 (2002) 25–55

43. SDMetrics: The Software Design Metrics tool for the UML. http://www.

sdmetrics.com, Last Visited March 2009
44. Borland: Borland Together. http://www.borland.com/us/products/together,

Last Visited March 2009
45. IBM: IBM Rational Systems Developer. http://www.ibm.com/software/

awdtools/developer/systemsdeveloper, Last Visited March 2009
46. ArgoUML Project: ArgoUML. http://argouml.tigris.org, Last Visited March

2009
47. Lange, C., Chaudron, R.: Empanada: Empirical analysis of architecture and design

quality. http://www.win.tue.nl/empanada/tools.htm, Last Visited March 2009
48. Boger, M., Sturm, T., Fragemann, P.: Refactoring Browser for UML. In: Revised

Papers from the International Conference NetObjectDays on Objects, Compo-
nents, Architectures, Services, and Applications for a Networked World. Volume
2591 of Lecture Notes in Computer Science., Springer (2003)

49. Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards Automating Source-
Consistent UML Refactorings. In: UML 2003 – Modeling Languages and Ap-
plications. Volume 2863 of Lecture Notes in Computer Science., Springer (2003)

50. Seuring, P.: Design and Implementation of a UML Model Refactoring Tool. Mas-
ter’s thesis, Hasso-Plattner-Institute for Software Systems Engineering at the Uni-
vesity of Potsdam (2005)

51. Zeiss, B., Vega, D., Schieferdecker, I., Neukirchen, H., Grabowski, J.: Applying
the ISO 9126 Quality Model to Test Specifications – Exemplified for TTCN-3 Test
Specifications. In: Proceedings of Software Engineering 2007 (SE 2007). Volume
105 of Lecture Notes in Informatics (LNI)., Köllen Verlag (2007)

52. Object Management Group (OMG): Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, formal/08-04-03 (2009)

53. openArchitectureWare.org: openArchitectureWare (oAW). http://www.

openarchitectureware.org, Last Visited March 2009
54. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: A QVT-Like

Transformation Language. In: Companion to the 21st ACM SIGPLAN Symposium
on Object-Oriented Programming Systems, Languages, and Applications, ACM
(2006)

55. Eclipse Foundation: Eclipse Model Development Tools (MDT) OCL. http://www.
eclipse.org/modeling/mdt/?project=ocl, Last visited March 2009

