
FACILITATING EFFICIENT DATA ANALYSIS OF REMOTELY SENSED IMAGES USING
STANDARDS-BASED PARAMETER SWEEP MODELS

Shahbaz Memon1,2, Gabriele Cavallaro1, Morris Riedel1,2,Helmut Neukirchen2

1 Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany
2 School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland

ABSTRACT

Classification of remote sensing images often use Sup-
port Vector Machines (SVMs) that require an n-fold cross-
validation phase in order to do model selection. This phase
is characterized by sweeping through a wide set of param-
eter combinations of SVM kernel and cost parameters. As
a consequence this process is computationally expensive but
represents a principled way of tuning a model for better
accuracy and to prevent overfitting together with regulariza-
tion that is in SVMs inherently solved in the optimization.
Since the cross-validation technique is done in a principled
way also known as ’gridsearch’, we aim at supporting re-
mote sensing scientists in two ways. Firstly by reducing the
time-to-solution of the cross-validation by applying state-
of-the-art parallel processing methods because the sweep of
parameters and cross-validation runs itself can be nicely par-
allelized. Secondly by reducing manual labour by automating
the parallel submission processes since manually performing
cross-validation is very time consuming, unintuitive, and
error-prone especially in large-scale cluster or supercom-
puting environments (e.g., batch job scripts, node/core/task
parameters, etc.).

Index Terms— Remote sensing, Support Vector Ma-
chine (SVM), cross-validation, High-Performance Comput-
ing (HPC), Parameter Sweep, Middleware.

1. INTRODUCTION

Remote sensing image datasets are an important source of in-
formation for many interdisciplinary applications addressing
specific topics such as global and local climate change stud-
ies, ecological and environmental monitoring, or urban plan-
ning. These datasets can be complex (i.e., with high spec-
tral, spatial, radiometric and temporal resolutions) and not re-
liable (e.g., equipment failure, noise), thus they can not be
directly used by the applications. A powerful and automatic

Thanks to Jülich Supercomputing Centre (JSC) for funding. This work
was partly supported by NordForsk as part of the Nordic Center of Excellence
(NCoE) eSTICC (eScience Tools for Investigating Climate Change at High
Northern Latitudes). Correspondence: m.memon@fz-juelich.de

processing scheme for extracting reliable and valuable infor-
mation must usually include feature engineering approaches
(e.g., spatial information enhancement [1]) and data mining
methods (e.g., classification including validation and regular-
ization techniques). The classification of remote sensing im-
ages is the essential technique [2] used for extracting informa-
tion. A relevant example is the separation of different types
of land-cover classes. But the implicit complexity and dimen-
sionality of sensed images are responsible for extensive limi-
tations in classification. For instance problems arise when the
classification methods require fast and highly scalable solu-
tions for real-time applications (e.g., earthquake scenarios or
glacial surges). Selected developments in High-Performance
Computing (HPC) allow the classification algorithms to scale
to large datasets [3]) while yielding high accuracy and results
in a reasonable time.

Among the widely used remote sensing classifiers, Sup-
port Vector Machines (SVMs) [4] have often been found to
be more effective in terms of classification accuracies and sta-
bility of parameter settings. However, SVMs are very de-
manding with respect to the processing time, e.g., in tun-
ing the hyperplane parameters with cross-validation in order
to perform model selection. The cross-validation phase is
laborious if done manually by remote sensing scientists, as
it requires re-runs of SVM optimization corresponding to a
wide set of parameter combinations. Without any automa-
tion tool this phase takes a considerable amount of time and
is also error-prone especially when performed on HPC ma-
chines with even more low-level technical parameters (e.g.
number of cores, number of tasks per core, number of nodes,
memory) that are typically machine-specific. To simplify the
enhancement and usability of a parallelized cross-validation
phase, we are proposing the adoption of a standards-based
HPC middleware that handles an automated parameter sweep
model which may consist of complex parametric representa-
tions, in a single n-fold cross-validation computational job.

2. BACKGROUND AND RELATED WORK

We shortly introduce the two basic concepts SVM and mid-
dleware that have been combined in this paper.



2.1. Support Vector Machines and piSVM

SVMs are one of the most powerful classification techniques
today. The general idea of SVMs lies in separating training
samples which belong to different classes by tracing maxi-
mum margin hyperplanes in the space where the samples are
mapped [4]. Hence, SVMs only demand training samples
close to the class boundary, and it is thus capable of handling
high dimensional data even if only a small number of train-
ing samples is available. SVMs were originally introduced
to solve linear classification problems. In order to general-
ize them to non-linear decision functions, i.e., more complex
classes that are not linearly separable in the original feature
space, the so-called kernel trick can be applied [5]. The sen-
sitivity to the choice of the kernel and the cost parameters can
be considered as the most important disadvantages of SVM.

We surveyed related work in [3] and have shown that de-
spite the availability of many SVM parallelization strategies,
only a very limited set of stable and scalable implementations
is available as open source software. We improved a version
of piSVM 1.2 [6] that was identified in [3] as a stable im-
plementation since it is based on the libSVM library. We op-
timized it using better parallel processing techniques such as
collective operations of the mature HPC standard Message
Passing Interface (MPI). This implementation offers signifi-
cant speed-ups for the cross validation, training and testing
steps while maintaining the same accuracy as achieved when
performing the classification with serial algorithms.

2.2. Standards-based Middleware and UNICORE

We use the middleware approach to abstract from low-level
HPC machine details to make it easier for non-experts to sub-
mit and monitor parallel remote sensing classification jobs.
To avoid vendor-locks, we rely on middleware based on stan-
dards for parallel job management and monitoring as well as
data transfer and management functions [7] such as OGSA-
BES [8], JSDL [9] and its extensions [10, 11]. The elements
of the SVM cross-validation step can be captured through
JSDL’s parameter sweep extension [10] for building job exe-
cutions of parametric nature. JSDL allows any part of job re-
quest to be parametrized, in particular application arguments.
UNICORE [12] is a middleware which offers a seamless layer
of abstraction to access different kinds of HPC environments
and implements those standards. UNICORE supports this ex-
tension on its client and server tiers [13].

Required parameter sweep functionality is also imple-
mented by gLite and gEclipse. But gLite’s Workload Man-
agement System uses a proprietary approach called JDL to
allow parametric job requests. gEclipse is a client-side appli-
cation, though it supports the JSDL standard but not the full
suite of extensions for HPC environments. We therefore have
chosen the UNICORE middleware.

3. EXPERIMENTAL ANALYSIS

We validate our approach by measuring the performance of
our parallel SVM implementation and the parameter sweep
functionality using UNICORE with a remote sensing dataset.

3.1. Remote Sensing Dataset

The Indian Pines hyperspectral dataset [14] was acquired in
June 1992 by the AVIRIS sensor over an agricultural site com-
posed of fields with regular geometry and with a variety of
crops. This data set represents a very challenging land-cover
classification problem dominated by similar spectral classes
and mixed pixels. The scene is made up of 1417×617 pix-
els (with spatial resolution 20 m) and 30 features, which were
obtained with the methods described in [3].

3.2. Experimental Setup

For evaluating the performance of our parallel piSVM imple-
mentation, we compared it to the serial SVM implementation
in MATLAB running on a laptop computer having one In-
tel Core i7-4710HQ 2.5 GHz CPU and 16 GB of RAM. The
piSVM was executed on the JURECA [15] cluster where each
compute node has two Intel Xeon E5-2680 v3 Haswell 12
core processors with 2.5 GHz and 128 to 512 GB of RAM. We
deployed the piSVM application and the UNICORE server on
the JURECA HPC cluster.

The evaluation was performed in two modes, with and
without UNICORE middleware adoption. Fig. 1 depicts the
steps required in the manual and in our automated UNICORE
workflow methodology.

For evaluation of our application of parameter sweeps
for the automated cross-validation, we have implemented
a workflow shown in Fig. 1(b) while Fig. 1(a) shows the
manual labour process by scientists when running a parallel
cross-validation job. The workflow runs tThe whole cross-
validation process as a single parametric job on piSVM appli-
cation parameters and performs model selection by picking
the best parameters according to estimated accuracies. The
concerned application parameters for our case study are C
and G with C being the cost as regularization parameter, and
G the parameter of the choosen RBF kernel.

The manual workflow shown in Fig. 1(a) is rather low-
level and thus advanced HPC system knowledge is required
by a user, e.g. to access and monitor jobs. In the course of
job management, the user prepares the environment on the
cluster to create a job directory for each cross-validation pa-
rameter combination (Step 1). The required data then has to
be supplied explicitly to the job environment (Step 2). The
user then creates a job script which is hard-coded to the re-
spective HPC machine batch system (Step 3) that is SLURM
in our case. Once the job script is prepared, the user submits
individual jobs separately or by means of a wrapper script
(Step 4) that in turn requires sound UNIX knowledge. All



Job monitoringSubmit job 
Request

(a)

Access input data Develop Job Script Manual 
submission

Manual job 
monitoring Search C, G values 

Create Job 
Request

Search best C, G 
values 

Maintain job 
directories

(b)
1 2 3 4

1 2 3 4 5 6

Fig. 1. Flowchart of the (a) manual and the (b) automatic method.

Table 1. Serial 10-fold cross-validation (MATLAB)
G / C 1 10 100 1000 10000

2 48.90 (18.8) 65.01 (19.6) 73.21 (20.1) 75.6 (22.5) 74.42 (21.2)
4 57.53 (16.8) 70.74 (13.9) 75.94 (13.5) 76.04 (14.0) 74.06 (15.6)
8 64.18 (18.3) 74.45 (15.0) 77.00 (14.4) 75.78 (14.7) 74.58 (14.9)
16 68.37 (23.2) 76.20 (21.9) 76.51 (20.7) 75.32 (19.6) 74.72 (19.7)
32 70.17 (34.5) 75.48 (34.8) 74.88 (34.1) 74.08 (34.0) 73.84 (38.8)

the jobs have to be monitored individually (Step 5). After the
jobs are finished, then the user searches for the best C and
G according to the accuracy somewhere in job output logs
(Step 6). As part of cross-validation, many parameter combi-
nations need to be tried, hence Steps 3, 4 and 5 are iterative;
if there is no sophisticated script to automatically deal with
parameter combinations, then individual job scripts and jobs
have to be created for each parameter setting. All in all this
process is error-prone and time consuming.

In the automated workflow, depicted in Fig. 1(b), the user
creates a job request which conforms to the JSDL [9] [11] and
Parameter Sweep [10] specification (Step 1). The job request
is formulated as an XML instance in which the user can spec-
ify what parameters shall be iterated together with a pointer
to the input data source. Once the job request is formalized,
the next step is to execute the workflow. In this step, a re-
mote request will be sent to a target server which interfaces
the backend cluster, which is in our case JURECA (Step 2).
The server validates the job requirements and then performs
the resolution of the parameters to be processed before execu-
tion. During execution, the server will generate the required
number of jobs; in our case, the parameter sweep equals the
cartesian product of five C and five G values (=25 jobs). The
input data set will also get transparently downloaded from the
data source. Furthermore, the server monitors all the gen-
erated sweep jobs (Step 3), but these sweep jobs are hidden
from the user, only one job is visible to her: the master job
representing the sweep. From the result, the best C and G
values can be obtained (Step 4).

Table 2. Parallel 10-fold cross-validation (piSVM, 24 cores)
G / C 1 10 100 1000 10000

2 49.02 (7.3) 65.12 (8.6) 73.17 (13.5) 75.76 (22.5) 74.44 (33.0)
4 57.59 (7.4) 70.88 (8.9) 75.87 (11.6) 76.02 (14.7) 74.06 (17.9)
8 64.17 (7.9) 74.53 (9.3) 77.02 (10.4) 75.79 (11.3) 74.42 (12.2)

16 68.58 (9.8) 76.07 (10.6) 76.4 (10.9) 75.26 (11.2) 74.53 (11.3)
32 70.12 (13.9) 75.38 (14.3) 74.69 (14.6) 73.91 (14.6) 73.73 (14.6)

3.3. Experimental Results

Tables 1 and 2 show the accuracies and the computation times
(in minutes shown as value in parentheses) of cross-validation
for the serial and the parallel SVM implementation, respec-
tively. When comparing the tables, a significant speed-up
was obtained for all parameter combinations while maintain-
ing the accuracies. The best accuracy is marked in bold and
indicates the optimal C and G parameter combination which
is used in the training phase.

As can be seen, the cross-validation in the serial case is
computationally intensive. The reason is that the training-
validation is performed 10 times for each of the 25 combina-
tions of the C and G parameters. The total processing time
is 534.6 minutes. Because each partition set is independent,
the cross-validation performed in parallel can achieve a sig-
nificant speed up, thus reducing the overall processing time to
322.25 minutes using 24 cores. The biggest impact is shown
when performing parallel and scalable cross-validation over
the so-called ’gridsearch’ as each step in the grid can be also
performed in parallel. As a consequence, we implement a
two-level parallelization of the cross-validation phase com-
pared to serial MATLAB runs.

It should be noted that Table 2 shows the performance
of all parameter combinations without any overhead of UNI-
CORE middleware. In our experience, the use of UNICORE
brings additional delay of approximately 2 minutes for com-
pleting the whole sweep. Thus, for every single sweep it-
eration, a delay of few seconds is introduced, which we
think is not critical when keeping in mind that otherwise the
whole process of cross-validation would involve multiple and
time consuming and and error-prone manual user interactions
which are now avoided.



In the manual sequence, the user has to engage in multiple
steps, e.g. creating batch system specific job scripts (for all
the parameters combinations), data management and transfer,
and job monitoring. Debugging of failed sweeps may be very
cumbersome. The automatic sequence is more high-level and
prevents user from manually interacting with individual runs,
except for creating and submitting the initial job request.

4. CONCLUSIONS

We conclude that one can obtain significant speed-ups of an
automated cross-validation phase used in classification of re-
mote sensing images by applying a parallel and scalable SVM
approach. We further conclude that using a standard-based
middleware that implements the concept of parameter sweeps
for cross-validation runs significantly increases the produc-
tivity of scientists when using HPC machines for the analysis.
The middleware approach allows not only reduces error-prone
and time-consuming and tedious manual labour but also sup-
ports the re-use of the workflow on different HPC machines
using other standards-based middleware.

In order to automate also other data analysis steps, we in-
tend to extend our cross-validation workflow to include model
generation and prediction phases which will directly use best
parameters resulted from it.

The described approach has applications in many other re-
mote sensing application areas. For our work, it is promising
to apply it to determine calving fronts of glaciers [16] where
we are already applying a UNICORE workflow to couple a
continuum ice sheet model and a discrete element calving
model [17].

5. REFERENCES

[1] G. Cavallaro, M. Dalla Mura, J. A. Benediktsson, and
A. Plaza, “Remote Sensing Image Classification Using
Attribute Filters Defined over the Tree of Shapes,” IEEE
Transactions on Geoscience and Remote Sensing, 2016.

[2] A. K. Maini and V. Agrawal, Satellite Technology: Prin-
ciples and Applications, John Wiley & Sons, 3rd edi-
tion, 2014.

[3] G. Cavallaro, M. Riedel, M. Richerzhagen, J.A.
Benediktsson, and A. Plaza, “On understanding big data
impacts in remotely sensed image classification using
support vector machine methods,” IEEE journal of se-
lected topics in applied earth observations and remote
sensing, vol. 8, no. 10, pp. 4634–4646, 2015.

[4] C. Cortes and V. Vapnik, “Support-vector networks,”
Machine Learning, vol. 20(3), pp. 273–297, 1995.

[5] B. Schölkopf and A.J. Smola, Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond, MIT Press, 2002.

[6] D. Brugger, “piSVM,” website, 2014, http://
pisvm.sourceforge.net.

[7] M. Shahbaz Memon, A. Shiraz Memon, M. Riedel,
B. Schuller, D. Mallmann, B. Tweddell, A. Streit,
S. van de Berghe, D. Snelling, V. Li, M. Marzolla, and
P. Andreetto, “Enhanced resource management capa-
bilities using standardized job management and data ac-
cess interfaces within UNICORE Grids,” in Interna-
tional Conference on Parallel and Distributed Systems.
2007, IEEE.

[8] I. Foster et al., “OGSA Basic Execution Service (BES),
Version 1.0,” Open Grid Forum GFD-R.108, Nov 2008.

[9] A. Anjomshoaa et al., “Job Submission Description
Language (JSDL) Specification, Version 1.0,” Open
Grid Forum GFD-R.136, July 2008.

[10] M. Drescher et al., “JSDL Parameter Sweep Job Exten-
sion,” Open Grid Forum GFD-R-P.149, May 2009.

[11] A. Savva, “JSDL SPMD Application Extension, Version
1.0,” Open Grid Forum GFD-R-P.115, August 2007.

[12] A. Streit et al., “Unicore 6 recent and future advance-
ments,” Annals of Telecommunications, vol. 65, no. 11-
12, pp. 757–762, 2010.

[13] Shahbaz Memon, S. Holl, B. Schuller, M. Riedel, and
A. Grimshaw, “Enhancing the Performance of Scientific
Workflow Execution in e-Science Environments by Har-
nessing the Standards Based Parameter Sweep Model,”
in Proceedings of the Conference on Extreme Science
and Engineering Discovery Environment: Gateway to
Discovery (XSEDE ’13). 2013, ACM.

[14] M.F. Baumgardner, L.L. Biehl, and D.A. Landgrebe,
“220 Band AVIRIS Hyperspectral Image Data Set:
June 12, 1992 Indian Pine Test Site 3,” 2015,
DOI:10.4231/R7RX991C.

[15] Jülich Supercomputing Centre, “JURECA,” web-
site, 2016, http://www.fz-juelich.de/
ias/jsc/EN/Expertise/Supercomputers/
JURECA/JURECA_node.html.

[16] J. A. Åström, D. Vallot, M. Schäfer, E.Z. Welty,
S. O’Neel, T.C. Bartholomaus, Yan Liu, T.I. Riikilä,
T. Zwinger, J. Timonen, and J.C. Moore, “Termini of
calving glaciers as self-organized critical systems,” Na-
ture Geoscience, vol. 7, pp. 874–878, 2014.

[17] Shahbaz Memon, D. Vallot, T. Zwinger, and
H. Neukirchen, “Coupling of a continuum ice
sheet model and a discrete element calving model using
a scientific workflow system,” in Geophysical Research
Abstracts, Volume 19 – EGU General Assembly 2017.
2017, Copernicus Publications, submitted.


