
Automated Refactoring Suggestions Using the
Results of Code Analysis Tools

Steffen Herbold, Jens Grabowski
Institute of Computer Science

University of G̈ottingen
Göttingen, Germany

Email: {herbold, grabowski}@cs.uni-goettingen.de

Helmut Neukirchen
Faculty of Industrial Engineering,

Mechanical Engineering and Computer Science
University of Iceland
Reykjav́ık, Iceland

Email: helmut@hi.is

Abstract—Static analysis tools are used for the detection of
errors and other problems on source code level. The detected
problems related to the internal structure of a software can be
removed by source code transformations called refactorings. To
automate such source code transformations, refactoring toolsare
available. In modern integrated development environments, there
is a gap between the static analysis tools and the refactoring tools.
This paper presents an automated approach for the improvement
of the internal quality of software by using the results of code
analysis tools to call a refactoring tool to remove detected
problems. The approach is generic, thus allowing the combination
of arbitrary tools. As a proof of concept, this approach is imple-
mented as a plug-in for the integrated development environment
Eclipse.

Keywords—Software verification and validation; Software in-
spection techniques; Software testing tools; Refactoring; Tool
integration

I. I NTRODUCTION

An important constituent of software verification and val-
idation is the inspection of source code by means of static
analysis tools. These tools are able to detect many possible
defects, as well as coding problems on the source code level.
In particular, issues that relate to bad internal structureare
called code smells[1] or just smells. Code smells can be
removed by applyingrefactorings. Refactoring is defined as
“a change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing
its observable behavior[1]”. Modern integrated development
environments(IDE), such as theEclipse Java Development
Tools (JDT) [2], are able to apply the transformation steps of
a refactoring automatically. Thus, the risk of unintentionally
changing the behaviour of a program during the application
of a refactoring is significantly reduced.

While refactoring is the natural means to remove code
smells revealed by static analysis and even though both static
analysis and refactoring are well supported and automated
by tools, there is a gap between these tools, i.e., suggesting
the application of automated refactorings based on the results
of static analysis tools. To overcome this gap, we present a
generic approach to connect static analysis tools and refac-
toring tools. As proof of concept, we have implemented our
approach on top of theEclipseplatform [3] as a plug-in called
AddFix. AddFix allows generic and flexible association of
refactorings from various Eclipse-based refactoring tools to

results from arbitrary static analysis tools that are available as
plug-ins for Eclipse.

The structure of this paper is as follows. After this introduc-
tion, related work is discussed in Section II. In Section III, we
present our general approach. Subsequent, in Section IV, we
describe the application of our approach and its implementa-
tion as AddFix plug-in for the Eclipse platform. An evaluation
of the applicability of our approach is provided in Section V.
Finally, a conclusion and an outlook on future work are given.

II. RELATED WORK

A multitude of tools support the automated transforma-
tion of source code using refactorings, e.g., theRefactoring
Browser for Smalltalk source code [4] or the Eclipse JDT
and NetBeans IDE[5] for Java source code [2]. A survey
on refactoring and refactoring tools is provided by Mens and
Tourwé [6].

Other tools are able to detect code smells using static
analysis, e.g.,FindBugs[7][8] or PMD [9][10] for Java source
code. However, these tools (and their analysis results) arenot
linked to refactoring tools.

There are several theoretical approaches dealing with how
entities that need refactoring can be automatically detected.
Crespo et al. [11] have suggested a language independent
metric-based approach to detect code smells in object-oriented
software, which can then be used to infer where refactorings
should be applied. Also, Simon et al. [12] have shown that
software metrics can be used to detect entities to be refactored.
Kataoka et al. [13] suggest an invariant-based approach to
detect where refactorings can be applied. Balazinska et al.[14]
suggest clone-analysis to support detection of duplicatedcode
that needs to be refactored. However, these approaches only
propose refactorings, without integration in a refactoring tool
to support their automated application.

Mens et al. [15] have shown that it is possible to use code
smell detection as an automated method for the suggestion of
refactorings and integrated their approach with the Smalltalk
Refactoring Browser. Neukirchen et al. [16] have developed
the quality assurance tool TRex for the test language TTCN-
3. TRex uses software metrics and code smell detection
to automatically suggest and apply one of the implemented
refactorings. The Eclipse JDT [2] supports the applicationof

Fig. 1. This figure shows a marker that was generated by the FindBugs Eclipse plug-in: The tool FindBugs used static analysis to detect the problematic
method name and placed a marker near the corresponding source code line to indicate the problem.

fixes mainly to remove compilation problems of Java source
code. (Strictly speaking, these problems are not smells and
the fixes are not behaviour preserving refactorings.) All these
approaches have in common that they are hard-coded for the
respective refactoring tool and hard-linked to the respective
analysis components. In contrast, the approach presented in
this paper is language independent and generic, thus allowing
to couple arbitrary analysis tools with arbitrary refactoring
tools.

III. A PPROACH

Our approach to combine the results of static analysis tools
with refactoring tools is based on the fact that the result
generated by code analysis tools typically includes textual
descriptions of the problems that were detected. Thus, we use
regular expressions to match these textual descriptions. The
Eclipse and NetBeans platforms, e.g., display the results of
static code analysis tools in form ofmarkers(see Figure 1) or
error stripesrespectively. Both contain a text message, which
can be matched using regular expressions.

In our approach, rules are used to associate refactorings
to the textual problem descriptions. In addition to a regular
expression, a rule consists of a reference to a refactoring
implementation and a specification of the parameters that
need to be passed to this refactoring. To keep the reference
to the refactoring implementation independent from a spe-
cific refactoring tool, an adapter [17] rather than an actual
refactoring implementation is referenced from within the rule.
By exchanging the adapter, different refactoring tools canbe
targeted.

IV. T HE ADDFIX TOOL

We have developedAddFix [18] as proof of concept im-
plementation for our approach. While it is based on the
notion of markers and quick fixesof the Eclipse platform,
it is completely independent from the analysis tools and the
refactoring tools that shall be coupled. The only requirement is
that the analysis tool reports its results by generating Eclipse
markers and that the refactoring tool can be called from within
an Eclipse plug-in, i.e., our AddFix tool that implements a
quick fix. Both the analysis tools and the refactoring tools are
available as plug-ins for the Eclipse platform.

In this section, the relevant Eclipse concepts are introduced.
Afterwards, we describe which problems needed to be solved
by AddFix and how AddFix solves them.

A. Eclipse Concepts

In Eclipse, a quick fix is an automated solution to a problem.
If, e.g., within a Java source code, an entity is referenced

that is externally defined but not imported, a quick fix could
automatically add the missing import statement. Using an
extension point, it is possible to define and add own quick
fixes. Extension points define where and how plug-ins can
add functionality to Eclipse. There are two types of extension
points: those to which contributions can only be made at
compile-time and those to which contributions can also be
made at run-time. Unfortunately, the extension point to define
quick fixes belongs to the first category. This restricts the
capabilities to add quick fixes by an end user at run-time.

In Eclipse, markers are a versatile concept. Generally, they
can be used to mark resources such as files or projects almost
arbitrarily. Every marker defines at least three attributes: a
uniqueId, a typeand amessage. The unique Id is used as an
internal identifier by Eclipse. The type and the message define
how the marker should be interpreted. For example, the type of
a marker could be “problem” and its message “Semicolon
missing”. The type of a marker is also important because
quick fixes cannot be added to any marker type, but only to
those, that need “fixing”. An example for markers that do not
need to be fixed are markers of type “task”. By definition, a
task cannot be fixed, but has to be performed. Thus, Eclipse
does not allow quick fix support for task markers.

Most markers have more attributes than only the above
mentioned three. Typically, specific information about the
location of a problem is also provided by a marker. The
above example of a marker for a missing semicolon would
not be useful, if it were only associated with a file name but
the location of the missing semicolon would still be unclear.
However, if the line would be known, the problem would be
easy to locate. The marker shown in Figure 1 also contains
information about the file and the line number as well. Hence,
Eclipse is able to display this marker next to the corresponding
line of the affected file.

In general, the ability to locate and remove the actual reason
for a marker depends on the additional information provided
by the marker. In sections IV-C and IV-D, we will show
how marker information can be exploited in a general way
to allow the addition of quick fixes to markers by utilising the
information that can be obtained from a marker.

B. Associating Quick Fixes to Markers

To implement our approach for linking Eclipse-based static
analysis tools and refactoring tools together, we exploit the
Eclipse quick fix mechanism. Quick fixes that call refactoring
implementations are used to combine the two kinds of tools.
To achieve this, two general problems need to be solved:

First, it has to be decided which quick fix, i.e., which kind of
refactoring, to add to which marker. To support arbitrary static

1 <a d d f i x>
2 <r u l e
3 markerTex t =”The .∗ name .∗ doesn ’ t s t a r t w i th a lower case l e t t e r ”>

4 < f i x>

5 <c l a s s>
6 de . ugoe . cs . swe . a d d f i x . q u i c k f i x . j a v a . RenameLowerCase
7 < / c l a s s>
8 <param desc =”NAME”>
9 <p a t t e r n>

10 The .∗ name (.∗) doesn ’ t s t a r t w i th a lower case l e t t e r
11 </ p a t t e r n>
12 </param>

13 <param desc =”TYPE”>
14 <p a t t e r n>
15 The (.∗) name .∗ doesn ’ t s t a r t w i th a lower case l e t t e r
16 < / p a t t e r n>
17 < / param>
18 < / f i x>

19 < / r u l e>
20 < / a d d f i x>

Fig. 2. The definition of a rule in XML: The regular expressionthat defines where the rule is applicable is specified in themarkerText attribute of the
rule node. Thefix subnode(s) specifies the quick fixes that will be added to markers that match the rule: the nodeclass defines the class in which the
quick fix is implemented. The optionalparam node(s) define the parameters that are passed to the quick fix.

analysis tools and refactoring tools, this association should
not be hard-coded, but user configurable at run-time. Hence,a
strategy is needed that is flexible enough to define a set of rules
at run time – simple enough to be feasible, but also specific
enough such that the quick fixes will only be added where they
are applicable and useful. This is described in Section IV-C.

Second, to call a refactoring implementation when a quick
fix is invoked, all the data required for a refactoring needs
to provided by the quick fix instance to the refactoring
implementation. When creating an instance of a quick fix,
this data needs to be extracted from the information provided
by a marker. Consider, e.g., aRenamerefactoring: Such a
refactoring requires information about the identifier of the
entity that shall be renamed. Usually, this information canbe
easily obtained if the marker provides sufficient information,
like the location (line, column) of the identifier within a file.
On the other hand, consider anExtract Methodrefactoring for
the extraction of a part of a very long method into a method
on its own. While it is easy to identify long methods, it is
generally impossible to automatically decide what exact part of
a method shall be extracted. Whether the information provided
by a marker is sufficient to initiate a refactoring depends on
the particular marker information and the refactoring to be
associated. A generic and flexible approach to extract this
information from a marker is presented in Section IV-D.

C. Definition of a Rule Set

Regular expressions are used to allow users to flexibly
specify which quick fixes are added to a marker generated
by an analysis tool: if the text of a marker matches
the regular expression, the quick fix is applicable. For
example, a rule containing the regular expression “The
.* name .* doesn’t start with a lower case
letter” (Line 3 in Figure 2) would match markers with
the message “The method name ExampleMethod
doesn’t start with a lower case letter” as

well as markers with the message “The field name
ExampleField doesn’t start with a lower
case letter” and could suggest a Rename refactoring as
an associated quick fix. On rule level, the quick fix to use is
specified by referring to the name of a Java class (Line 6 in
Figure 2). This class serves as an adapter to call the actual
refactoring implementation provided by a specific refactoring
tool. This approach allows easy and flexible definition of
rules. For example, new quick fixes that call refactorings
can be added by simply adding the class defining the quick
fix. The users of the AddFix tool need not to care about
the Eclipse extension point that is internally responsibleto
determine whether the quick fix is applicable or not, but
simply solves this by using a regular expression. In the
same manner, existing quick fixes can simply be added to
markers to which they are not yet associated by adding a
corresponding AddFix rule.

As mentioned in Section IV-A, Eclipse does not allow to add
quick fixes to markers of type “task”. This is a drawback, since
a task can sometimes be performed by a quick fix. An example
for this is the static analysis tool PMD: for the problems it
detects, PMD creates task markers instead of markers of the
type “warning”. To resolve this, AddFix supports not only
to add automatically quick fixes to markers, but also to add
automatically new warning markers to existing task markers.
Again, rules based on regular expressions are used. These
expressions are matched against the texts of all task markers.
If there is a match, AddFix adds a new warning marker with
the same attributes as the task marker. Then, quick fixes can
be automatically added to the newly created warning markers
based on the AddFix rules.

Due to the inflexibility of the Eclipse extension point which
is used to add quick fixes to markers, AddFix can only add
quick fixes to markers, whose types were known at compile
time (see Section IV-A). A workaround for this restriction

of the Eclipse platform would be to let AddFix create new
markers for all unknown marker types in the same way it is
already done for task markers.

D. Using Quick Fixes to Call Refactorings

To apply a refactoring, a sufficient amount of information
concerning the entity that shall be refactored is needed, e.g.,
the location in the source code where to apply a refactoring.
Since our approach relies solely on the markers generated by
analysis tools, all the information required for the application
of a refactoring needs to be obtained from these markers.

As described in Section IV-A, only very few marker at-
tributes are mandatory. While markers generated by anal-
ysis tools typically contain information concerning the
file and the line number to which a marker refers, of-
ten further information concerning the start and end col-
umn of a problem is lacking. However, for applying most
refactorings, more detailed information is required. Con-
sider, e.g., a marker with the text “The method name
example.Parser.ParseString(String) doesn’t
start with a lower case letter” as it is shown
in Figure 1. From the message text, it can be inferred that
a Rename refactoring is required to remove the problem.
However, for the application of a Rename refactoring, a
refactoring tool typically needs a pointer to the identifierto be
renamed, e.g., by specifying the line and column location of
that identifier within a file. Unfortunately, the marker shown in
Figure 1 contains only line and file name information, but no
column information. As multiple identifiers may be contained
in a single line, knowing just the line number of a marker is
in general not sufficient to select the correct identifier to be
renamed.

However, from the marker text, further information can
be extracted: The marker text provides information that a
method name (and not, e.g., a field name) has to changed
and it contains detailed information about the package, class,
name and parameter types of the method to be renamed.
This information is sufficient to identify any method within
a project unambiguously. (In fact, not even the file name and
the line number information would be required in this case.)

To be able to pass this information to a quick fix instance
that calls a refactoring, our rule approach provides a flexible
parameter mechanism that allows the user of AddFix to
specify which parts of a marker text to extract and to pass
as parameters to a quick fix. As a result, AddFix is applicable
even if the optional marker attributes concerning the location
are either missing or wrong (provided that the marker text
itself provides sufficient information).

AddFix rules that extract information from marker texts and
pass this information as named parameters to quick fixes, use
regular expressions also to specify which parts of a marker
text to extract: those parts of a regular expression that are
enclosed by parentheses determine which parts of the marker
text are extracted and passed as an actual parameter value. In
the example rule in Figure 2, the regular expression “The .*
name (.*) doesn’t start with a lower case

letter” in line 10 would yield the actual parameter value
“example.Parser.ParseString(String)” when
applied to the marker shown in Figure 1. To support passing
multiple parameters to a quick fix, parameters are named:
In Figure 2, lines 8–12 define a parameter named “NAME”,
whereas lines 13–17 define a parameter named “TYPE”. The
latter uses a regular expression to extract those parts of the
marker text that specify whether a method name or a field
name is affected (Line 15).

In addition to parameter values extracted at run-time from
marker texts, AddFix supports also the specification of rules
that provide constant parameter values. This allows to re-use
and configure an existing quick fix class from within different
rules just by passing appropriate parameters.

The quick fix classes that are called by an AddFix rule
will in turn evaluate the parameters that are passed to call
the corresponding refactoring implementation of the specific
refactoring tool. One might argue, that the task of extracting
information from marker texts can also be performed directly
by the quick fix classes. However, this would make quick fix
classes directly dependent on specific marker texts or analysis
tools that generate these specific marker texts. In this case, to
support additional analysis tools, the quick fix would need to
be changed. Using our parameter mechanism, it is possible to
define the parameters together with the marker-specific rules,
independent from the generic quick fix classes that are only
specific with respect to the refactoring tool to call, but not
with respect to the analysis tool generating the markers.

E. Implementation

The AddFix Eclipse plug-in we implemented as proof of
concept is divided into three parts: the core; the user interface;
the quick fixes.

The core is responsible for the rule management and rule
application. This includes the responsibility to add new mark-
ers when matching task markers, as well as the removal of
all markers set by AddFix. The rules are stored persistently
using an XML file. Figure 2 shows how rules are defined in
the XML file. The integrity of the rule set is guaranteed by a
Document Type Definition(DTD) grammar.

The user interface package provides a preference page to
manipulate the rule set, as it is shown in Figure 3. It allows
easy adding, editing and deleting of rules.

The quick fix package provides quick fix implementations
that serve as adapters to call refactorings offered by different
Eclipse refactoring plug-ins. In addition, an abstract class is
provided for adding quick fixes that can use the parameter
mechanism of AddFix. The abstract class defines the required
functionality needed to use the parameter mechanism. Sec-
tion V-A discusses a quick fix implementation that uses the
parameter mechanism.

V. EVALUATION OF ADDFIX

To evaluate the applicability of AddFix, we conducted
two case studies where we used AddFix to couple different
static analysis tools available as Eclipse plug-in with different

Fig. 3. This figure shows how the AddFix rules can be edited using an Eclipse preference page: The rules are listed showing their regular expression. Using
additional edit dialogs, the class that defines the associated quick fix and the parameters can be edited.

Eclipse refactoring plug-ins. As a part of this case study,
refactoring-tool-specific quick fixes were implemented and
analysis-tool-specific AddFix rules were written.

The results of these case studies demonstrate that AddFix is
both effective and efficient: associating quick fixes to markers
using the regular expression-based AddFix rules was feasible.
By adding quick fixes to markers, either a selective application
of individual quick fix instances is offered by the Eclipse
platform or all quick fixes of the same class can be applied
to a set of problems in a batch (see Figure 4). In both cases,
the corresponding refactoring implementation is called that is
correctly configured by each quick fix instance. As a result,
the code smells reported by the analysis tool are efficiently
removed. In contrast, had no quick fixes been associated to the
markers, a user would have had to decide on the appropriate
refactoring and call it individually for each marker. Thus,
the AddFix approach significantly reduces the efforts for the
removal of problems detected by analysis tools.

In the first case study, AddFix is applied to connect Java-
specific analysis and refactoring Eclipse plug-ins. In the
second case study, AddFix is used to connect markers and
refactorings specific to an Eclipse-based tool for the test
language TTCN-3.

A. Java Case Study

We used Eclipse plug-ins of the FindBugs tool [8] and
the PMD tool [10] to analyse Java source code and generate
corresponding markers. Both tools provide only the line num-
ber, but no column information in their generated markers.
Furthermore, PMD creates only task markers for which no
addition of quick fixes is supported by Eclipse. We have
written AddFix rules for several marker texts that refer to
code smells that can be resolved using a Rename refactoring.
The AddFix parameter mechanism is used to pass additional
information to the quick fix classes. An example rule for
FindBugs is shown in Figure 2. To support the addition of
quick fixes to PMD task markers, additional rules for the
creation of corresponding warning markers have been written.

The Eclipse JDT provides a flexible Rename refactoring
implementation. Several quick fix classes have been imple-
mented to rename identifiers using different capitalisation as
required by the coding rules assumed by the analysis tools. The
JDT Rename refactoring can be applied to any Java element
by passing its identifier as stored in theAbstract Syntax Tree
(AST) internally used by the JDT. Thus, if a quick fix wants to
call this refactoring, it has to be able to locate the Java element
in the AST. To be able to work with as many different markers
and analysis tools as possible, the quick fix class implemented
for this case study uses both optional marker attributes andthe
parameter mechanism.

Fig. 4. An Eclipse dialog to apply a quick fix to a set of applicable markers:
The quick fixes were added by AddFix to the marker shown in Figure 1.

If the exact position of the element in the source code
is provided by an optional marker attribute, the quick fix
class can easily obtain the identifier using the capabilities
of the JDT. In addition, the quick fix class can also use the
combination of the line number and either the type or the name
of the Java element to locate the identifier to be renamed. A
further parameter the quick fix will use if provided, is a “look-
around” parameter to deal with the fact that some analysis
tools tend to place their markers one line off (see Figure 1
where the marker has been wrongly created one line below
the actual method name). To deal with this, the quick fix class
can use the look-around parameter to consider alson lines
before and after line number provided by a marker. The value
n of the look-around parameter is defined as an analysis tool-
specific fixed parameter value in the AddFix rules.

B. TTCN-3 Case Study

To show that AddFix is also able to target other languages
and tools than those from the Java domain, we applied it also
to the test language TTCN-3 that is supported by the Eclipse
plug-in TRex [19]. TRex comes with an analysis component
that creates markers and provides a refactoring component as
well. While TRex already associates refactorings via quick
fixes for some of its markers, we used AddFix to add further
associations. In addition to corresponding AddFix rules, a
quick fix class has been created that calls theInline Template
Parameterrefactoring of TRex. This quick fix is implemented
specific to the TRex markers, because these markers already
contain required pointers into the TRex AST. Hence, the
implementation of this tool-specific quick fix was very easy.

VI. CONCLUSION AND FUTURE WORK

We have presented a flexible and tool-independent approach
to close the gap between code analysis tools and refactoring
tools by associating them to each other. This approach has
been validated by our open-source implementation called
AddFix [18]. With our approach, it is possible to not only
suggest, but also trigger and automatically call refactorings

based solely on information provided by code analysis tools.
Hence, our approach and its implementation can be used as an
adapter between the already existing code analysis tools and
refactoring tools. To reduce the dependency on tool-specific
marker attributes, a method to extract information from marker
texts has been developed. Furthermore, AddFix can be used to
write quick fixes for Eclipse without having to deal with the
Eclipse extension point for quick fixes. Thus, AddFix reduces
the complexity of adding own quick fixes to Eclipse.

While the AddFix implementation is specific to the Eclipse
platform, the underlying approach is applicable to other plat-
forms that support concepts similar to Eclipse markers and
quick fixes.

In our future work, we will evaluate the applicability of
AddFix to other code analysis tools, e.g., CheckStyle [20],and
other tools for fixing problems will be evaluated. Furthermore,
we want to analyse which problems can be fixed by these tools
automatically based on the information static analysis tools
provide and implement corresponding flexible and re-usable
quick fixes for these problems.

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional, 1999.

[2] Eclipse Foundation, “Java Developement Tools Eclipse Plug-in,”
17.06.2009. [Online]. Available: http://www.eclipse.org/jdt/

[3] ——, “Eclipse Project,” 17.06.2009. [Online]. Available: http://www.
eclipse.org

[4] D. Roberts, J. Brant, and R. Johnson, “A refactoring toolfor Smalltalk,”
Theory and Practice of Object systems, vol. 3, no. 4, pp. 253–263, 1997.

[5] Sun Microsystems, “NetBeans,” 17.06.2009. [Online]. Available:
http://www.netbeans.org

[6] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE Trans.
Softw. Eng., vol. 30, no. 2, pp. 126–139, 2004.

[7] B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and
K. Stephens, “Improving your software using static analysisto find
bugs,” in Dynamic Languages Symposium 2006. ACM, 2006.

[8] “FindBugs,” 17.06.2009. [Online]. Available: http://findbugs.sf.net
[9] T. Copeland,PMD applied. Centennial Books, 2005.

[10] “PMD,” 17.06.2009. [Online]. Available: http://pmd.sf.net
[11] Y. Crespo, C. Lopez, R. Marticorena, and E. Manso, “Language inde-

pendent metrics support towards refactoring inference,” in9th ECOOP
Workshop on Quantitative Approaches in Object-Oriented Software
Engineering, 2005.

[12] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refac-
toring,” in Fifth European Conference on Software Maintenance and
Reengineering. IEEE, 2001.

[13] Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin, “Automated
support for program refactoring using invariants,” inIEEE International
Conference on Software Maintenance 2001. IEEE, 2001.

[14] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis,
“Advanced clone-analysis to support object-oriented systemrefactoring,”
in 7th Working Conference on Reverse Engineering. IEEE, 2000.

[15] T. Mens, T. Tourwe, and F. Munoz, “Beyond the refactoring browser:
Advanced tool support for software refactoring,” inSixth International
Workshop on Principles of Software Evolution. IEEE, 2003.

[16] H. Neukirchen, B. Zeiss, J. Grabowski, P. Baker, and D. Evans, “Quality
assurance for TTCN-3 test specifications,”Software Testing, Verification
and Reliability (STVR), vol. 18, no. 2, pp. 71–97, Jun. 2008.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns –
Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[18] “AddFix,” 17.06.2009. [Online]. Available: http://gforge.informatik.
uni-goettingen.de/projects/addfix/

[19] “TRex,” 17.06.2009. [Online]. Available: http://www.trex.informatik.
uni-goettingen.de/

[20] “CheckStyle,” 17.06.2009. [Online]. Available: http://checkstyle.sf.net

