Automated Refactoring Suggestions Using the
Results of Code Analysis Tools

Steffen Herbold, Jens Grabowski Helmut Neukirchen
Institute of Computer Science Faculty of Industrial Engineering,
University of Gittingen Mechanical Engineering and Computer Science
Gottingen, Germany University of Iceland
Email: {herbold, grabowski@cs.uni-goettingen.de Reykjavk, Iceland

Email: helmut@hi.is

Abstract—Static analysis tools are used for the detection of results from arbitrary static analysis tools that are aldd as
errors and other problems on source code level. The detected plug-ins for Eclipse.
problems related to the internal structure of a software can be The structure of this paper is as follows. After this introglu

removed by source code transformations called refactorings. To ti lated Kis di d in Section II. In Sectionwe
automate such source code transformations, refactoring toolare 1on, relatéd work IS discussed In section 1. In section

available. In modern integrated development environments, there Present our general approach. Subsequent, in Section IV, we
is a gap between the static analysis tools and the refactoring tools. describe the application of our approach and its implementa

This paper presents an automated approach for the improvement tion as AddFix plug-in for the Eclipse platform. An evalumti
of the internal quality of software by using the results of code of the applicability of our approach is provided in Section V

analysis tools to call a refactoring tool to remove detected Finall lusi d tlook fut K .
problems. The approach is generic, thus allowing the combination "~ Mally, & conclusion and an outiook on future work are given

of arbitrary tools. As a proof of concept, this approach is imple-
mented as a plug-in for the integrated development environment

Eclipse. A multitude of tools support the automated transforma-
Keywords—Software verification and validation; Software in-yion of source code using refactorings, e.g., Refactoring
spection techniques; Software testing tools; Refactoring; Toog -
integration rowser for Smalltalk source code [4] or the Eclipse JDT
and NetBeans IDE[5] for Java source code [2]. A survey
|. INTRODUCTION on refactoring and refactoring tools is provided by Mens and
An important constituent of software verification and valTourwé [6].
idation is the inspection of source code by means of staticOther tools are able to detect code smells using static
analysis tools. These tools are able to detect many possibtelysis, e.g.FindBugs[7][8] or PMD [9][10] for Java source
defects, as well as coding problems on the source code lewside. However, these tools (and their analysis resultshpaire
In particular, issues that relate to bad internal structane linked to refactoring tools.
called code smells[1] or just smells Code smells can be There are several theoretical approaches dealing with how
removed by applyingefactorings Refactoring is defined asentities that need refactoring can be automatically detect
“a change made to the internal structure of software to makeGrespo et al. [11] have suggested a language independent
easier to understand and cheaper to modify without changimgetric-based approach to detect code smells in objecttede
its observable behavidfl]”. Modern integrated development software, which can then be used to infer where refactorings
environments(IDE), such as theEclipse Java Developmentshould be applied. Also, Simon et al. [12] have shown that
Tools (JDT) [2], are able to apply the transformation steps @oftware metrics can be used to detect entities to be reéatto
a refactoring automatically. Thus, the risk of unintenéityy Kataoka et al. [13] suggest an invariant-based approach to
changing the behaviour of a program during the applicatiatetect where refactorings can be applied. Balazinska Et4]l.
of a refactoring is significantly reduced. suggest clone-analysis to support detection of duplicatel®
While refactoring is the natural means to remove codbat needs to be refactored. However, these approaches only
smells revealed by static analysis and even though botie st@iropose refactorings, without integration in a refactgrinol
analysis and refactoring are well supported and automatedsupport their automated application.
by tools, there is a gap between these tools, i.e., suggestinMens et al. [15] have shown that it is possible to use code
the application of automated refactorings based on thdtsesismell detection as an automated method for the suggestion of
of static analysis tools. To overcome this gap, we presentefactorings and integrated their approach with the Saikllt
generic approach to connect static analysis tools and-ref&efactoring Browser. Neukirchen et al. [16] have developed
toring tools. As proof of concept, we have implemented othe quality assurance tool TRex for the test language TTCN-
approach on top of thEclipseplatform [3] as a plug-in called 3. TRex uses software metrics and code smell detection
AddFix AddFix allows generic and flexible association ofo automatically suggest and apply one of the implemented
refactorings from various Eclipse-based refactoring ¢am refactorings. The Eclipse JDT [2] supports the applicatdn

Il. RELATED WORK

public S5tring[] ParseS3tring(5tring str) {
|The method name exarmple.Parser.ParseString(String) doesn't start with a lower case Ietter|

Fig. 1. This figure shows a marker that was generated by theBeigel Eclipse plug-in: The tool FindBugs used static analysidetect the problematic
method name and placed a marker near the corresponding sodledin® to indicate the problem.

fixes mainly to remove compilation problems of Java sourdkat is externally defined but not imported, a quick fix could
code. (Strictly speaking, these problems are not smells aamgtomatically add the missing import statement. Using an
the fixes are not behaviour preserving refactorings.) Adsth extension pointit is possible to define and add own quick
approaches have in common that they are hard-coded for fixes. Extension points define where and how plug-ins can
respective refactoring tool and hard-linked to the respect add functionality to Eclipse. There are two types of extensi
analysis components. In contrast, the approach presentegoints: those to which contributions can only be made at
this paper is language independent and generic, thus atjpwcompile-time and those to which contributions can also be
to couple arbitrary analysis tools with arbitrary refastgr made at run-time. Unfortunately, the extension point torgefi
tools. quick fixes belongs to the first category. This restricts the
capabilities to add quick fixes by an end user at run-time.

In Eclipse, markers are a versatile concept. Generally, the

Our approach to combine the results of static analysis to@lan be used to mark resources such as files or projects almost
with refactoring tools is based on the fact that the resudtbitrarily. Every marker defines at least three attributes
generated by code analysis tools typically includes téxtuaniqueld, atypeand amessageThe unique Id is used as an
descriptions of the problems that were detected. Thus, we usternal identifier by Eclipse. The type and the message @lefin
regular expressions to match these textual descriptiohs. Thow the marker should be interpreted. For example, the tfpe o
Eclipse and NetBeans platforms, e.g., display the resiilts 2 marker could be “problem” and its messa@efi col on
static code analysis tools in form ofarkers(see Figure 1) or mi ssi ng”. The type of a marker is also important because
error stripesrespectively. Both contain a text message, whidfuick fixes cannot be added to any marker type, but only to
can be matched using regular expressions. those, that need “fixing”. An example for markers that do not

In our approach, rules are used to associate refactoringsed to be fixed are markers of type “task”. By definition, a
to the textual problem descriptions. In addition to a regulaask cannot be fixed, but has to be performed. Thus, Eclipse
expression, a rule consists of a reference to a refactoriiges not allow quick fix support for task markers.
implementation and a specification of the parameters thatMost markers have more attributes than only the above
need to be passed to this refactoring. To keep the referemgentioned three. Typically, specific information about the
to the refactoring implementation independent from a spkcation of a problem is also provided by a marker. The
cific refactoring tool, an adapter [17] rather than an actuabove example of a marker for a missing semicolon would
refactoring implementation is referenced from within théer not be useful, if it were only associated with a file name but
By exchanging the adapter, different refactoring tools ban the location of the missing semicolon would still be unclear
targeted. However, if the line would be known, the problem would be
easy to locate. The marker shown in Figure 1 also contains
information about the file and the line number as well. Hence,

We have developedddFix [18] as proof of concept im- Eclipse is able to display this marker next to the correspand
plementation for our approach. While it is based on thge of the affected file.
notion of markers and quick fixesof the Eclipse platform, |n general, the ability to locate and remove the actual reaso
it is completely independent from the analysis tools and thér a marker depends on the additional information provided
refactoring tools that shall be coupled. The only requinehi® py the marker. In sections IV-C and IV-D, we will show
that the analysis tool reports its results by generatingp&el how marker information can be exploited in a general way
markers and that the refactoring tool can be called fromiwithto allow the addition of quick fixes to markers by utilisingeth
an Eclipse plug-in, i.e., our AddFix tool that implements gformation that can be obtained from a marker.
quick fix. Both the analysis tools and the refactoring toaks a o)]
available as plug-ins for the Eclipse platform. B. Associating Quick Fixes to Markers

In this section, the relevant Eclipse concepts are intreduc To implement our approach for linking Eclipse-based static
Afterwards, we describe which problems needed to be solvadalysis tools and refactoring tools together, we explod t
by AddFix and how AddFix solves them. Eclipse quick fix mechanism. Quick fixes that call refactgrin
implementations are used to combine the two kinds of tools.
To achieve this, two general problems need to be solved:

In Eclipse, a quick fix is an automated solution to a problem. First, it has to be decided which quick fix, i.e., which kind of
If, e.g., within a Java source code, an entity is referenceefactoring, to add to which marker. To support arbitragtist

IIl. APPROACH

IV. THE ADDFIX ToOL

A. Eclipse Concepts

1| <addfix>

2 <rule

3 markerText="The * name x doesn’'t start with a lower case lettex”
4 <fix>

5 <class>

6 de.ugoe.cs.swe.addfix.quickfix.java.RenamelLowerCas

7 <lclass>

8 <param desc="NAME>

9 <pattern>

10 The x name (x) doesn’t start with a lower case letter
11 </pattern>

12 </param>

13 <param desc="TYPE?

14 <pattern>

15 The (x) name x doesn’t start with a lower case letter
16 <l pattern>

17 </ param>

18 <l fix>

19 <lrule>

20| </ addfix>

Fig. 2. The definition of a rule in XML: The regular expressithiat defines where the rule is applicable is specified inntheker Text attribute of the
rul e node. Thef i x subnode(s) specifies the quick fixes that will be added to mattkat match the rule: the nodd ass defines the class in which the
quick fix is implemented. The optionglar amnode(s) define the parameters that are passed to the quick fix.

analysis tools and refactoring tools, this associationukho well as markers with the messagdhe field nane
not be hard-coded, but user configurable at run-time. Hemcebxanpl eFi el d doesn't start with a | ower
strategy is needed that is flexible enough to define a setef rutase | ett er” and could suggest a Rename refactoring as
at run time — simple enough to be feasible, but also specifia associated quick fix. On rule level, the quick fix to use is
enough such that the quick fixes will only be added where thepecified by referring to the name of a Java class (Line 6 in
are applicable and useful. This is described in Section IV-Crigure 2). This class serves as an adapter to call the actual
Second, to call a refactoring implementation when a quickfactoring implementation provided by a specific refacpr
fix is invoked, all the data required for a refactoring needsol. This approach allows easy and flexible definition of
to provided by the quick fix instance to the refactoringules. For example, new quick fixes that call refactorings
implementation. When creating an instance of a quick fickan be added by simply adding the class defining the quick
this data needs to be extracted from the information pravidéx. The users of the AddFix tool need not to care about
by a marker. Consider, e.g., Renamerefactoring: Such a the Eclipse extension point that is internally responsiole
refactoring requires information about the identifier ok thdetermine whether the quick fix is applicable or not, but
entity that shall be renamed. Usually, this information ban simply solves this by using a regular expression. In the
easily obtained if the marker provides sufficient inforraati same manner, existing quick fixes can simply be added to
like the location (line, column) of the identifier within adil markers to which they are not yet associated by adding a
On the other hand, consider &xtract Methodrefactoring for corresponding AddFix rule.
the extraction of a part of a very long method into a method g e ntioned in Section IV-A, Eclipse does not allow to add
on its own. Wh|lg ItIs easy to_ identify _Iong methods, it ISquick fixes to markers of type “task”. This is a drawback, sinc
generally impossible to automatically decide what exaot qfa

. . . .a task can sometimes be performed by a quick fix. An example
a method shall be extracted. Whether the information prmtndgor this is the static analysis tool PMD: for the problems it
by a marker is sufficient to initiate a refactoring depends :

.)) ! Ocpetects, PMD creates task markers instead of markers of the
the particular marker information and the refactoring to

i . . e “warning”. To resolve this, AddFix supports not only
gssomatgd. A generic anq flexible approach .to extract ﬂf gadd automatically quick fixes to markers, but also to add
information from a marker is presented in Section IV-D.

automatically new warning markers to existing task markers
C. Definition of a Rule Set Again, rules based on regular expressions are used. These

Regular expressions are used to allow users to ﬂexitﬁ;pressmns are matched against the texts of all task nsarker

specify which quick fixes are added to a marker generat Othere IS attml?t(t:h, Addt';'x tad?(s a nlt(aw v_\ll_?]rnlng ”_‘ak”;_er with
by an analysis tool: if the text of a marker matche € same allributes as the fask marker. Then, quick Tixes can

the regular expression, the quick fix is applicable. F e automatically added to the newly created warning markers

example, a rule containing the regular expressiorhée’ ased on the AddFix rules.

.* name .x* doesn’'t start with a | ower case Due to the inflexibility of the Eclipse extension point which

| etter” (Line 3 in Figure 2) would match markers withis used to add quick fixes to markers, AddFix can only add
the message The net hod nanme Exanpl eMet hod quick fixes to markers, whose types were known at compile
doesn’'t start with a |ower case letter” as time (see Section IV-A). A workaround for this restriction

of the Eclipse platform would be to let AddFix create newetter” in line 10 would yield the actual parameter value
markers for all unknown marker types in the same way it fexanpl e. Parser. ParseString(String)” when
already done for task markers. applied to the marker shown in Figure 1. To support passing
multiple parameters to a quick fix, parameters are named:
In Figure 2, lines 8-12 define a parameter namBANE”,

To apply a refactoring, a sufficient amount of informationhereas lines 13-17 define a parameter nanf&PE”. The
concerning the entity that shall be refactored is needed, elatter uses a regular expression to extract those partseof th
the location in the source code where to apply a refactoringarker text that specify whether a method name or a field
Since our approach relies solely on the markers generatedniayne is affected (Line 15).
analysis tools, all the information required for the apgticn In addition to parameter values extracted at run-time from
of a refactoring needs to be obtained from these markers. marker texts, AddFix supports also the specification ofgule

As described in Section IV-A, only very few marker atthat provide constant parameter values. This allows tosee-u
tributes are mandatory. While markers generated by anahd configure an existing quick fix class from within differen
ysis tools typically contain information concerning theules just by passing appropriate parameters.
file and the line number to which a marker refers, of- The quick fix classes that are called by an AddFix rule
ten further information concerning the start and end cobill in turn evaluate the parameters that are passed to call
umn of a problem is lacking. However, for applying mosthe corresponding refactoring implementation of the djmeci
refactorings, more detailed information is required. Conefactoring tool. One might argue, that the task of extragti
sider, e.g., a marker with the texfTHe et hod name information from marker texts can also be performed diyectl
exanpl e. Parser. ParseString(String) doesn't by the quick fix classes. However, this would make quick fix
start with a lower case letter” as it is shown classes directly dependent on specific marker texts or sisaly
in Figure 1. From the message text, it can be inferred th@bls that generate these specific marker texts. In this tase
a Rename refactoring is required to remove the problesupport additional analysis tools, the quick fix would need t
However, for the application of a Rename refactoring, lée changed. Using our parameter mechanism, it is possible to
refactoring tool typically needs a pointer to the identifiebe define the parameters together with the marker-specifis rule
renamed, e.g., by specifying the line and column location pfdependent from the generic quick fix classes that are only
that identifier within a file. Unfortunately, the marker shoim specific with respect to the refactoring tool to call, but not
Figure 1 contains only line and file name information, but nwith respect to the analysis tool generating the markers.
column information. As multiple identifiers may be contalne)
in a single line, knowing just the line number of a marker i§- Mplementation
in general not sufficient to select the correct identifier & b The AddFix Eclipse plug-in we implemented as proof of
renamed. concept is divided into three parts: the core; the userfanter

However, from the marker text, further information carthe quick fixes.
be extracted: The marker text provides information that aThe core is responsible for the rule management and rule
method name (and not, e.g., a field name) has to changgplication. This includes the responsibility to add newkna
and it contains detailed information about the packagessclaers when matching task markers, as well as the removal of
name and parameter types of the method to be renamall.markers set by AddFix. The rules are stored persistently
This information is sufficient to identify any method withinusing an XML file. Figure 2 shows how rules are defined in
a project unambiguously. (In fact, not even the file name atice XML file. The integrity of the rule set is guaranteed by a
the line number information would be required in this casepocument Type Definitio(DTD) grammar.

To be able to pass this information to a quick fix instance The user interface package provides a preference page to
that calls a refactoring, our rule approach provides a flexibmanipulate the rule set, as it is shown in Figure 3. It allows
parameter mechanism that allows the user of AddFix &msy adding, editing and deleting of rules.
specify which parts of a marker text to extract and to passThe quick fix package provides quick fix implementations
as parameters to a quick fix. As a result, AddFix is applicabieat serve as adapters to call refactorings offered byrdifite
even if the optional marker attributes concerning the locat Eclipse refactoring plug-ins. In addition, an abstractsslés
are either missing or wrong (provided that the marker tegtovided for adding quick fixes that can use the parameter
itself provides sufficient information). mechanism of AddFix. The abstract class defines the required

AddFix rules that extract information from marker texts anéunctionality needed to use the parameter mechanism. Sec-
pass this information as named parameters to quick fixes, tig& V-A discusses a quick fix implementation that uses the
regular expressions also to specify which parts of a markesrameter mechanism.
text to extract: those parts of a regular expression that are
enclosed by parentheses determine which parts of the marker
text are extracted and passed as an actual parameter value. To evaluate the applicability of AddFix, we conducted
the example rule in Figure 2, the regular expressibhne . + two case studies where we used AddFix to couple different
nane (.*) doesn't start with a | ower case static analysis tools available as Eclipse plug-in witHiedént

D. Using Quick Fixes to Call Refactorings

V. EVALUATION OF ADDFIX

type filter text AddFix Preferences L g

General

AddFix Preferences Rurkes

=
Ant LV
: | Avoid variables with short names like .*
ANTLR Editor 1
el | Method nares should not start with capital letters
e M B Nrm: The .* name .* doesn't start with an upper case letter B
H Install/Update M B Mm: The.* name .* doesn't start with an lower case letter ’ Add
Java | Abstract classes should be named Abstracti(X
Metrice Preferences | Template is always referenced with same parameters, Consider inlining the parameters.
" Plua-in Dn:?lp_r.bmenlt
Edit rule : 22]
markerText: Variables that are final and static should be in all caps
Cluick fixes:
| de.ugoe.cs.swe.addfic.guickficjava Rename
| [Detete ||
i [
Edit Patameter e
o
Quickfixnarme: deugoe.cs.swe.addfix. quickfixjava.RenameCapital

Parameters:

Pattern/Constant %] that are final and static should be in all caps

| Description TYPE . 1

Fig. 3. This figure shows how the AddFix rules can be editedgiain Eclipse preference page: The rules are listed shola&igregular expression. Using
additional edit dialogs, the class that defines the assatigiick fix and the parameters can be edited.

Eclipse refactoring plug-ins. As a part of this case studg. Java Case Study

refactoring-tool-specific quick fixes were implemented and \ve ysed Eclipse plug-ins of the FindBugs tool [8] and

analysis-tool-specific AddFix rules were written. the PMD tool [10] to analyse Java source code and generate
corresponding markers. Both tools provide only the line aum

The results of these case studies demonstrate that AddFiR§: Put no column information in their generated markers.
both effective and efficient: associating quick fixes to neesk Urthermore, PMD creates only task markers for which no
using the regular expression-based AddFix rules was fieasitfddition of quick fixes is supported by Eclipse. We have

By adding quick fixes to markers, either a selective appticat written AddFix rules for several marker texts that refer to
of individual quick fix instances is offered by the Eclipsé:Ode smells that can be resolved using a Rename refactoring.

platform or all quick fixes of the same class can be appliérdw AddFix parameter mechanism is used to pass additional

to a set of problems in a batch (see Figure 4). In both casBdormation to the quick fix classes. An example rule for
the corresponding refactoring implementation is callet ta T~ 'NdBUgs is shown in Figure 2. To support the addition of
correctly configured by each quick fix instance. As a resuﬂ,u'Ck_ fixes to PMD t&,lSk marl_<ers, additional rules for _the
the code smells reported by the analysis tool are efficien{‘“i{/e"’u'On Of. correspondlng_ warning markers have been wrlt.te
removed. In contrast, had no quick fixes been associate@to .thThe EcI|p§e JoT prowde_s a _ﬂeX|bIe Rename refac'gonng
markers, a user would have had to decide on the appropri lementation. Several quick fix classes have been imple-

refactoring and call it individually for each marker. Thusfnemed to rename identifiers using different capitalisats

the AddFix approach significantly reduces the efforts far g equired by the coding_rules assumed k.Jy the analysis tobs. T
removal of problems detected by analysis tools. JDT Rename refactoring can be applied to any Java element

by passing its identifier as stored in tAdstract Syntax Tree
(AST) internally used by the JDT. Thus, if a quick fix wants to

In the first case study, AddFix is applied to connect Javaall this refactoring, it has to be able to locate the Javanetd
specific analysis and refactoring Eclipse plug-ins. In thia the AST. To be able to work with as many different markers
second case study, AddFix is used to connect markers ard analysis tools as possible, the quick fix class implegaent
refactorings specific to an Eclipse-based tool for the tefstr this case study uses both optional marker attributestaend
language TTCN-3. parameter mechanism.

R et

| Quick Fix |

Select the fix for 'The method name
example.Parser.Parsebtring(5tring) doesn't start with a

I'= Quick Fix

Select a fie

o ik Fedidnea i)
Perform a Rename-Refactoring

Problems:

_‘.,'—‘,J Location | Select All |
linell ——
Deselect All|

Cancel |

Resource

[7] & Parserjava

@ | Finish

|

Fig. 4. An Eclipse dialog to apply a quick fix to a set of apphieamarkers:
The quick fixes were added by AddFix to the marker shown in Fidur

based solely on information provided by code analysis tools
Hence, our approach and its implementation can be used as an
adapter between the already existing code analysis toals an
refactoring tools. To reduce the dependency on tool-specifi
marker attributes, a method to extract information fromkaar
texts has been developed. Furthermore, AddFix can be used to
write quick fixes for Eclipse without having to deal with the
Eclipse extension point for quick fixes. Thus, AddFix reduce
the complexity of adding own quick fixes to Eclipse.

While the AddFix implementation is specific to the Eclipse
platform, the underlying approach is applicable to otheit-pl
forms that support concepts similar to Eclipse markers and
quick fixes.

In our future work, we will evaluate the applicability of
AddFix to other code analysis tools, e.g., CheckStyle [26}
other tools for fixing problems will be evaluated. Furthermo
we want to analyse which problems can be fixed by these tools
automatically based on the information static analysidstoo

_ If the exact position of the element in the source codgovide and implement corresponding flexible and re-usable
is provided by an optional marker attribute, the quick figyick fixes for these problems.

class can easily obtain the identifier using the capalslitie
of the JDT. In addition, the quick fix class can also use the
combination of the line number and either the type or the nang)
of the Java element to locate the identifier to be renamed. A
further parameter the quick fix will use if provided, is a “leo
around” parameter to deal with the fact that some analysig]
tools tend to place their markers one line off (see Figure 1
where the marker has been wrongly created one line belol
the actual method name). To deal with this, the quick fix clasg)
can use the look-around parameter to consider aldmes
before and after line number provided by a marker. The valu®
n of the look-around parameter is defined as an analysis toqly
specific fixed parameter value in the AddFix rules.

B. TTCN-3 Case Study {g}

To show that AddFix is also able to target other languag A }
and tools than those from the Java domain, we applied it also
to the test language TTCN-3 that is supported by the Eclipse
plug-in TRex [19]. TRex comes with an analysis compone?lta
that creates markers and provides a refactoring compogent a
well. While TRex already associates refactorings via quick
fixes for some of its markers, we used AddFix to add furthé}!
associations. In addition to corresponding AddFix rules, a
quick fix class has been created that callsItiime Template [14]
Parameterrefactoring of TRex. This quick fix is implemented
specific to the TRex markers, because these markers alregdy
contain required pointers into the TRex AST. Hence, the
implementation of this tool-specific quick fix was very easyIm]

VI. CONCLUSION AND FUTURE WORK

We have presented a flexible and tool-independent approé](:ﬂ
to close the gap between code analysis tools and refactorjrg
tools by associating them to each other. This approach has
been validated by our open-source implementation calléd’
AddFix [18]. With our approach, it is possible to not only20]
suggest, but also trigger and automatically call refantgsi

REFERENCES

M. Fowler, Refactoring: Improving the Design of Existing Code
Addison-Wesley Professional, 1999.

Eclipse Foundation, “Java Developement Tools Eclipsaigfh,”
17.06.2009. [Online]. Available: http://www.eclipsegddt/

——, “Eclipse Project,” 17.06.2009. [Online]. Availadl http://www.
eclipse.org

D. Roberts, J. Brant, and R. Johnson, “A refactoring foolSmalltalk,”
Theory and Practice of Object systenasl. 3, no. 4, pp. 253-263, 1997.
Sun Microsystems, “NetBeans,” 17.06.2009. [Online]. ahable:
http://www.netbeans.org

T. Mens and T. Tourwe, “A survey of software refactorihtiEEE Trans.
Softw. Eng.vol. 30, no. 2, pp. 126-139, 2004.

B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and
K. Stephens, “Improving your software using static analysisfind
bugs,” in Dynamic Languages Symposium 2008CM, 2006.
“FindBugs,” 17.06.2009. [Online]. Available: httpfifidbugs.sf.net

T. Copeland,PMD applied Centennial Books, 2005.

“PMD,” 17.06.2009. [Online]. Available: http://pmd.set

Y. Crespo, C. Lopez, R. Marticorena, and E. Manso, “Laage inde-
pendent metrics support towards refactoring inferencegtmECOOP
Workshop on Quantitative Approaches in Object-Orientedtvwioe
Engineering 2005.

F. Simon, F. Steinbruckner, and C. Lewerentz, “Metriesdu refac-
toring,” in Fifth European Conference on Software Maintenance and
Reengineering IEEE, 2001.

Y. Kataoka, M. D. Ernst, W. G. Griswold, and D. Notkin, thomated
support for program refactoring using invariants,"|lEEE International
Conference on Software Maintenance 200IEEE, 2001.

M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and Knkagiannis,
“Advanced clone-analysis to support object-orientedesysefactoring,”
in 7th Working Conference on Reverse EngineerindgcEE, 2000.

T. Mens, T. Tourwe, and F. Munoz, “Beyond the refactgrisrowser:
Advanced tool support for software refactoring,” 8ixth International
Workshop on Principles of Software EvolutionEEE, 2003.

H. Neukirchen, B. Zeiss, J. Grabowski, P. Baker, and ¥@aris, “Quality
assurance for TTCN-3 test specificatiorSdftware Testing, Verification
and Reliability (STVR)vol. 18, no. 2, pp. 71-97, Jun. 2008.

E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign Patterns —
Elements of Reusable Object-Oriented Softwakeldison Wesley, 1995.
“AddFix,” 17.06.2009. [Online]. Available: http:/fgrge.informatik.
uni-goettingen.de/projects/addfix/

“TRex,” 17.06.2009. [Online]. Available: http://wwivex.informatik.
uni-goettingen.de/

“CheckStyle,” 17.06.2009. [Online]. Available: httftheckstyle.sf.net

