
An Empirical Study of Software Architectures’ Effect on Product Quality

Klaus Marius Hansen∗,

Department of Computer Science, University of Copenhagen, Njalsgade 128, bygn. 24, 5. sal, 2300 Kobenhavn S, Denmark

Kristjan Jonasson, Helmut Neukirchen

Department of Computer Science, University of Iceland, Saemundargotu 2, 101 Reykjavik, Iceland

Abstract

Software architecture is concerned with the structure of software systems and is generally agreed to influence software quality.
Even so, little empirical research has been performed on the relationship between software architecture and software quality. Based
on 1,141 open source Java projects, we calculate three software architecture metrics (measuring classes per package, normalized
distance, and a new metric introduced by us concerning the excess of coupling degree) and analyze to which extent these metrics
are related to product metrics (defect ratio, download rate, methods per class, and method complexity). We conclude that there are
a number of significant relationships between product metrics and architecture metrics. In particular, the number of open defects
depends significantly on all our architecture measures.

Keywords: Software architecture, metrics, product quality, empirical study

1. Introduction

It is often claimed that software architecture enables (or in-
hibits) software quality (cf. e.g., Perry and Wolf (1992); Gar-
lan and Shaw (1993)). An example would be that an architec-
tural choice of a specific, relational database for an application
implies quality constraints on performance, modifiability etc.
However, this claim has not been extensively validated empir-
ically. While much work has focused on measuring software
quality, little has focused on measuring software architecture.
In the work described here, we investigated the software archi-
tecture of open source software projects, defined metrics for
software architecture, and analyzed to which extent they corre-
lated with software quality metrics. Specifically, the data that
we collected was meta-data on 21,904 projects and source code
from 1,570 of these. All projects are Java projects and hosted
on the SourceForge1 repository. Based on the meta-data and
source code, we computed and analyzed the results of various
metrics. Our objective was to compare software architectures
and product quality according to various perspectives on soft-
ware quality.

Our main contributions are a new metric for modeling of cou-
pling and the actual empirical study of software architectures’
effect on product quality including the analysis of relationship
between individual metrics using uni- and multi-variate models.

The rest of this article is structured as follows: first, we
present some foundations in Section 2. Section 3 presents and

∗Corresponding author
Email addresses: klausmh@diku.dk (Klaus Marius Hansen∗),

jonasson@hi.is (Kristjan Jonasson), helmut@hi.is (Helmut Neukirchen)
1http://www.sourceforge.net

discusses metrics on software quality and on software architec-
ture. Next, Section 4 presents our operationalization process,
in particular our study method, including how data was gath-
ered and how metrics were calculated. Our analysis is presented
in Section 5 and Section 6 summarizes and and concludes our
work.

2. Background

Our view on software quality originates in the work of Garvin
(1984). Garvin defined a set of views on quality which are also
applicable to software (Kitchenham and Pfleeger, 1996). The
characteristics of quality in these views are:

• In the transcendental view, quality can be recognized but
not defined. This is the view that is espoused by Christo-
pher Alexander in his patterns work (Alexander, 1979)
and to a certain extent in the software patterns litera-
ture (Gamma et al., 1995)

• In the user view, a system has high quality if it fulfills the
needs of its users. This view is highly related to usability
and is in line with “quality in use” as defined in the ISO
9126 standard (ISO/IEC, 2001) as shown in Figure 1

• In the manufacturing view, a product is seen as being
of high quality if its development conforms to specifica-
tions and defined processes. This view is to a certain
extent part of CMM(I) (CMMI Product Team, 2006) or
SPICE (ISO/IEC, 2004) and to the “process quality” con-
cept briefly mentioned in ISO 9126 as shown in Figure 1.
In the sense of conformance to specifications, aspects of

Preprint submitted to The Journal of Systems and Software November 30, 2010



<<influences>>

Process Quality Internal Quality

<<depends on>>

<<influences>>

External Quality

<<depends on>>

<<influences>>

Quality in Use

<<depends on>>
<<measures>>

Process
Measures

<<measures>>

Internal
Measures

<<measures>>

External
Measures

<<measures>>

Quality in Use
Measures

Process Product Effect

Figure 1: ISO 9126 quality views. (Adapted from ISO/IEC (2001))

“external” quality related to faults is also related to this
view

• The value-based view equates quality to the amount a cus-
tomer is willing to pay for a product

• In the product view, quality is tied to properties of the
product being developed. This is the primary view of “in-
ternal” and “external” quality in ISO 9126 as shown in
Figure 1

Turning to software architecture, there are many definitions
of software architecture2. An influential and representative def-
inition by Bass et al. (2003) states that:

The software architecture of a computing system is
the structures of the system, which comprise software
elements, the externally visible properties of those el-
ements, and the relationships among them

In other words, software architecture is concerned with struc-
tures (which can, e.g., be development or runtime structures)
and abstracts away the internals of elements of structures by
only considering externally visible properties.

Recently, focus has also been on decisions made when defin-
ing system structures (Tyree and Akerman, 2005; Jansen and
Bosch, 2005). This leads to definitions such as:

A software system’s architecture is the set of princi-
pal design decisions made about the system (Taylor
et al., 2009).

We are here concerned with a large set of open source projects
and thus necessarily have to rely on (semi-)automated analyzes.
Thus we take the definition of Bass et al. as our basis for a
definition of software architecture.

Concerning metrics to measure software quality, a huge set of
metrics to chose from exists as metrics are widely practiced and
researched (Kan, 2002). However, only few of these metrics are
suitable to measure the quality of software architectural.

In principle, software architecture quality can be seen in any
of the views of Garvin. As an example, Grady Booch is apply-
ing a value-based view in his selection of software architecture
for the Handbook of Software Architecture3.

2http://www.sei.cmu.edu/architecture/start/definitions.
cfm

3http://www.handbookofsoftwarearchitecture.com

However, prevailing software architecture analysis meth-
ods (Dobrica and Niemela, 2002) tend to take a user-based
or manufacturing-based view on software architecture qual-
ity. The Architecture Trade-off Analysis Method (ATAM; Kaz-
man et al. (2000)), e.g., aims at finding trade-offs and risks
in a software architecture compared to stakeholder require-
ment. ATAM’s focus on stakeholders gives it to a large extent
a user-based quality view, but a manufacturing-based view is
also included (e.g., in determining whether a specific trade-off

is a potential risk). Architecture analysis methods do not of-
ten, however, include specific metrics on software architecture;
rather they focus on the software architecture-specific parts of
analyzes. Clements et al. (2002), e.g., describe metrics for
complexity only (e.g., “Number of component clusters” and
“Depth of inheritance tree” to predict modifiability and sources
of faults).

Very little has been written specifically on metrics for soft-
ware architecture. We looked systematically at papers from
architecture-related conferences that contain metrics (Hansen
et al., 2009). None of these metrics were appropriate for our
purposes nor did we find any other publication that investigates
empirically the effect of software architectures on product qual-
ity.

Applying statistical models and linear regression in the way
we do, to investigate relationships between different metrics, is
also novel in the software engineering literature, although it is
common in some other disciplines.

3. Metrics

We divide the metrics that we consider into “product met-
rics” which are metrics related to software quality that are not
architectural in nature and “architecture metrics” which are ar-
chitectural in nature. Section 3.1 presents and discusses product
metrics, Section 3.2 presents and discusses architecture met-
rics, while Section 3.3 summarizes our choice of metrics for
this work.

3.1. Product metrics

We are concerned with metrics that can measure quality from
any of the five views described in Section 2. With our data, we
can measure quality (to some extent) from three of the views.

2



Metrics related to the manufacturing view
Here we can use defect count as a direct measure of quality

to extent that defects are introduced during manufacturing.

Definition 1 (Open Defect Ratio (ODR)). The Open Defect
Ratio (ODR) for a project p is the ratio of the number of open
defects (plus 1) to the total number of open and closed defects
(plus 1).

Metrics related to the value-based view
The value users put on an open source software project

could be quantified indirectly in a number of ways: number of
downloads of a project, usage count, communication about the
project. Our data contains usage count, and we can use usage
rate as a direct measure of quality:

Definition 2 (Rate Of Usage (ROU)). The Rate Of Usage
(ROU) of a project p is the ratio of total number of downloads
to the project age (in days)

We explicitly exclude payment since the projects we are con-
cerned with can all be used without paying for the use.

Metrics related to the product view
In the product view, quality is not measured directly, but

rather through measuring internal characteristics of the prod-
uct. Basili et al. (1996) validated a set of design metrics orig-
inally proposed Chidamber and Kemerer (1994) as being use-
ful in predicting fault-prone classes. To limit the analysis, we
consider one metric here that was found to significantly predict
fault proneness4:

Definition 3 (Weighted Methods per Class (WMC)). The
number of methods defined in a class multiplied by a weight
for each method

We do not have fault data for specific classes in our data so
we do not apply this class level metric directly, but rather aver-
age WMC over all classes. Furthermore, as Basili et al. we set
the weight of each method to 1:

Definition 4 (Average Methods per Class (AMC)). The av-
erage number of methods defined in classes in a project

Other product metrics include McCabe’s cyclomatic com-
plexity metric (McCabe, 1976) and lines of code. While there
has been considerable controversy surrounding these and other
metrics (cf. e.g. Shepperd (1988)), the metrics are readily cal-
culated and may be used together to provide a metric of “com-
plexity density” (Gill and Kemerer, 1991). The cyclomatic
complexity of a program corresponds to the number of inde-
pendent, linear paths through the control graph of the program.

Definition 5 (Average Complexity Density (ACD)). ACD for
a project is the sum of the cyclomatic complexities for all meth-
ods in classes in the project, divided by the total number of
methods.

4The validation was done using C++, not Java as in our case

3.2. Software architecture metrics
“High-level design” metrics or object-oriented design met-

rics can to a certain extent also be used for software architec-
ture even though they often work on a detailed level (e.g., on
specific classes and their methods and fields). As an example
for such a translation of high-level design metrics to software
architecture, we may, e.g. following Basili et al. (1996) again,
define (analogous to WMC):

Definition 6 (Average Classes per Package (ACP)). The Av-
erage number of Classes per Package for a project is the total
number of classes divided by the total number of packages

3.2.1. Architecture metrics based on Martin
Martin5 defines a set of principles and metrics related to

(package) architectures. One of his principles is the following:

Definition 7 (The Dependency Inversion Principle (DIP)).
Depend on abstractions. Do not depend upon concretions.

To measure adherence to this principle, Martin proposes
three metrics:

Definition 8 (INStability (INS)). The number of outgoing de-
pendencies (from classes) for a package divided by the sum of
the number of outgoing and incoming dependencies of the pack-
age

Definition 9 (ABStractness (ABS)). The number of abstract
classes in a package divided by the sum of the number of ab-
stract and concrete classes in the package

Definition 10 (NOrmalized Distance (NOD)). The sum of in-
stability and abstractness for a package, normalized to be in
the range of 0 to 1, i.e., for a package p, NOD is |INS(p) +

ABS(p) − 1|

A value of NOD close to zero indicates that if a package has
many outgoing dependencies (INS is high) then it is not abstract
(ABS is low) or vice versa. Martin states that if NOD is close
to zero then “the package is abstract in proportion to its out-
going dependencies and concrete in proportion to its incoming
dependencies”.

Assume that for a package, p, NOD(p) is close to zero. If
p has a high degree of incoming dependencies in relation to
outgoing dependencies (i.e., INS is close to zero), then p is
highly abstract (ABS(p) close to 1). On the other hand, if p is
highly concrete (ABS(p) close to 0), then p has a high degree
of outgoing dependencies in relation to incoming dependencies.
Thus a low NODs for a project can be said to indicate that the
project follows the DIP.

In our case, we include interfaces in “abstract classes” in the
ABS metric. Furthermore, for INS, we consider only dependen-
cies expressed on a package level through “import” statements
(realizing that this estimate may be slightly off).

Again, to get a project-level metric, we average the normal-
ized distance over all packages in a project and get:

5http://www.objectmentor.com/resources/articles/
Principles_and_Patterns.pdf

3



3.2 10 32 100 316 1000 3162 10000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

#packages in project

lo
g(

pr
oj

ec
t-

de
pe

nd
en

ci
es

) 
/ l

og
(#

pa
ck

ag
es

-in
-p

ro
je

ct
)

Figure 2: Scatter plot of the relationship between project size, n, and coupling
exponent, k, for 1,141 studied projects. The gray line is the model (1) for the
parameters estimated at the beginning of Section 5. The explained variance R2

for the displayed model is 15.8%
.

Definition 11 (Average Normalized Distance (AND)). AND
for a project is the sum of NOD for all packages divided by the
number of packages

3.2.2. Further architecture metrics
We hypothesize that the more coupled an architecture is, the

harder it is to maintain. The dependency graph of the packages
of a project has a directed edge connecting two packages if a
class from the first package imports the second package (or a
class from that package). Thus a graph on n packages will have
at least n edges and at most n2 edges. It therefore seems nat-
ural to assume the graph having E = nk edges. We define the
coupling exponent of a project as the exponent k, and attempt
to find a model that describes how k depends on n. We note that

k =
log E
log n

with 1 ≤ k ≤ 2

and that it is realistic to assume that k tends to 1 with increasing
n (if this does not hold then the average number of imports per
package will grow without limit with project size). This means
that k is dependent on the size of projects and not directly usable
as a metric (across projects of differing sizes). This is illustrated
in Figure 2 for the 1,141 projects we studied.

We are thus faced with determining a model form which of-
fers enough flexibility to describe available data, and which
gives k ≈ 1 for large n with the added requirement that the
function has a finite limit when n goes to 0. One of the simplest
functions to fulfill these requirement would be a rational func-
tion on the form 1+a/(1+bn). To allow a little more flexibility,
we add an exponent, c, on n together with an error term giving
the model:

k = 1 +
a

1 + bnc +
1

log n
· ε (1)

where ε is an N(0, σ2)-distributed error term. Notice that the
error term tends to 0 with increasing n.

Maximum likelihood estimation can now be used to deter-
mine the parameters a, b, c, and σ2; we return to this in the
results section (Section 5). Based on this, we now define:

Definition 12 (Coupling Excess (CEX)). Given a set of
projects, S , where package dependencies are modeled using
(2), the Coupling Excess, CEX, of a project p ∈ S with n
packages and E dependencies among these packages is the
model residual:

CEX(p) = ε = log E − (1 +
a

1 + bnc ) log n

where a, b, and c have been estimated with maximum likelihood
according to (1)

3.3. Choice of metrics
We summarize the product and architecture metrics that we

have chosen to analyze further in Table 1 and Table 2 respec-
tively.

4. Gathering and processing of data

Our material is projects on SourceForge. We focus on
Java projects since this makes metrics calculation uniform and
we hypothesize that statistical correlations are more likely to
hold within similar projects. It has been observed that many
projects on SourceForge have little activity (Herraiz et al., 2008;
Beecher et al., 2007). In our analysis, we use projects where
there is activity in terms of download and furthermore if a
project has no activity it may still have a software architecture
that is of interest to investigate.

Our method can be divided into three steps:

1. Gathering data on projects, which involved
(a) Gathering meta-data on projects
(b) Filtering projects based on meta-data
(c) Gathering source code for projects
(d) Filtering projects based on source code

2. Measuring filtered projects by applying selected metrics
3. Statistically analyzing measurements

We describe step 1 (“Data Gathering”) and step 2 (“Project
Measurement”) next. Step 3 (analysis and results) is described
in detail in Chapter 5.

4.1. Data gathering
4.1.1. Meta-data gathering

We first collected meta-data on the 21,094 most highly
ranked Java projects on 2009-03-17 from SourceForge for
which it was possible to get such data. Here “Java projects”
were defined as projects belonging to “trove” 198 at Source-
Forge and “rank” was the SourceForge ranking of projects. The
data consisted of characteristics such as number of bugs, time of
latest file upload, number of developers, number of open bugs,
and SourceForge “rank”.

Below is an example record for the most highly ranked Java
project, “Sweet Home 3D” showing the characteristics that
were used in our analysis.

4



Metric Full Name Explanation
ODR Open Defect Ratio The ratio of open defects to the total num-

ber of defects
ROU Rate Of Usage The number of downloads per month the

project has existed
AMC Average Methods per Class The total number of methods divided by

the total number of classes
ACD Average Complexity Density The sum of cyclomatic complexities for all

methods divided by the number methods

Table 1: Product metrics

Metric Full Name Explanation
ACP Average Classes per Package The total number of classes divided by the

total number of packages
AND Average Normalized Distance A measure of how abstract (ratio of

abstract classes/interfaces to concrete
classes) and instable (ratio of outgoing de-
pendencies to all dependencies) packages
are on average

CEX Coupling Excess A measure to which degree the coupling
of packages to other packages exceeds our
coupling model

Table 2: Architecture metrics

name sweethome3d
url http://sourceforge.net/

projects/sweethome3d
bugs_closed 124
bugs_open 21
development_status 5
downloads 2441636
latest_file 2009-03-13
no_developers 8
registered 2005-11-07
repository_modules ["SweetHome3D"]
repository_type cvs

Figures 3 to 6 show the distribution of the number of developers,
development status, project age, and download characteristics for these
projects

1 2 3 4 5 6 7 8 9 10 11−20 21−30 31−40 41−50 > 50
0

2000

4000

6000

8000

10000

12000

Number of developers

Figure 3: Number of developers per project for all projects

Planning Pre−alpha Alpha Beta Stable Mature Inactive
0

1000

2000

3000

4000

5000

6000

Development status

Figure 4: Development status of projects for all projects

<1 1−2 2−3 3−4 4−5 5−6 6−7 7−8 8−9
0

500

1000

1500

2000

2500

3000

3500

4000

Project age (years)

Figure 5: Project age for all projects

4.1.2. Filtering based on meta-data
Based on the meta-data, we defined a set of relevant projects, i.e.,

projects amenable to our analyses. To be relevant, a project had to:

• Keep track of bugs using SourceForge. We defined this as

5



Relevance filtering
(“All projects”)

Classification filtering
(“Mature projects”)

Number of bugs reported ≥ 1 ≥ 1
Download rate (downloads per day) ≥ 2 ≥ 7
Number of developers ≥ 2 ≥ 4
Development status 4, 5, 6 5, 6
Project age (days) ≥ 180 ≥ 180
SLOC7 ≥ 2000 ≥ 2000
Total number of projects 1,141 282

Table 3: Filtering and classification summary

<0.01 0.01−0.1 0.1−1 1−10 10−100 >100
0

2000

4000

6000

8000

10000

Average number of downloads per day

Figure 6: Download rate for all projects

bugs_closed + bugs_open being greater than zero. For Sweet
Home 3D, the sum is 145 and 12,743 projects did not use Source-
Forge to keep track of bugs

• Have a reasonable download rate. We defined this to be down-
loaded at least 2 times a days over the project history. For
Sweet Home 3D, the download rate estimated on 2009-03-17
was, e.g., approximately 2,441,636/(2009-03-17 - 2005-11-07
days) = 1,191 downloads per day. 16,159 projects did not ful-
fill this criterion

• Have a sufficient number of developers to warrant a focus
on software architecture in the project. We defined this as
no_developers being at least 2. Sweet Home 3D, e.g., had
8 developers. 11,950 projects had less than two developers

• Have sufficiently advanced development status. We defined this
as having a SourceForge development_status of at least 4
which is “beta” status. The status of Sweet Home 3D, is “5”
which is “stable”. 10,048 projects did not fulfill this

• Have a development history. We defined this as registered
being at least 180 days ago at the time our analysis was made.
On 2009-03-17, Sweet Home 3D was, e.g., 1,226 days old. 2,412
projects were too young

We used the five criteria to filter the projects studied. The two first
criteria are in addition not only used for filtering but also as quality
measures for the projects. The result of this filtering was 1,570 Java
projects.

4.1.3. Source code gathering
We attempted to download source code for the filtered projects on

2009-03-30 or revisions with date stamp 2009-03-306. For projects

6This was done through a “-D2009-03-30” argument for CVS and a “-
r2009-03-30” argument for Subversion

that used CVS as configuration management tool, we downloaded all
current CVS modules. For projects that used SVN as configuration
management tool, we assumed that the project used the recommended
“Trunk” repository layout (Collins-Sussman et al., 2009). Further-
more, we did not follow external SVN references. This means that we
either i) downloaded all the top level “trunk” directory if there was one
or ii) attempted to download all “dir/trunk” directories (where “dir” is
a top level directory) if there was no trunk top level directory. No
distinction between monolithic and plugin-based application has been
made: if plugins and the core application were different projects on
SourceForge, each counts as a project on its own.

After source code download, we deleted all non-Java files since that
data is irrelevant for our analysis. In total, 3.3 GB of data and 550,198
Java files were downloaded.

Since our analysis requires source code, we further filtered based
on the available number of lines of code. We set 2,000 SLOC7 as the
limit; research by Zhang et al. (2009) indicates that for open source
Java projects, the average SLOC per class is around 100 yielding 20
classes as the limit in our case. We also removed three projects for
which our metrics could not be calculated. This further reduced the
number of relevant projects by 429 leaving 1,141 projects.

4.1.4. Classification filtering
We next classified a subset of the relevant projects as mature by

further requiring that development status should be at least “stable”,
that there should be at least four developers, and there should be more
than 7 downloads per day.

Table 3 summarizes our filtering of “mature” projects from all “rel-
evant” projects.

4.2. Metrics calculation
We use four techniques to gather facts from project source code:

• We use Python and regular expressions on the contents of Java
files to populate an (SQLite) database with data on public classes,
packages, and “import”s. We only detect package level imports
that are due to “import” statements

• We use SLOCCount8 to calculate the physical source lines of
code of projects. This data is also put into a database

• We use JavaNCSS9 to calculate cyclomatic complexity and
method count of projects. This data is exported to Rigi Standard
Format (Wong, 1996)

7SLOC: physical source lines of code, which is the total number of non-
blank, non-comment lines in the code

8http://www.dwheeler.com/sloccount/
9http://javancss.codehaus.org/

6



• Finally, we use a Java parser (built upon the Java grammar in-
cluded in JavaCC10) to extract data on inheritance (and imple-
mentation), on classes (and interfaces), and on methods. We
do a simple semantic analyzes that only uses the current project
as classpath to qualify references. Furthermore, we do not take
enums or generics into account

Thus, effectively, we have two types of data sets: i) relational data
and ii) Rigi data. We initially worked with relational data, but found
out (in line with Beyer et al. (2005)) that relational queries were in-
efficient in handling our data and thus also worked with data in Rigi
format.

With the relational data, we use simple relational queries, e.g., to
calculate the number of dependencies between distinct packages in a
project. With the Rigi data, we use Crocopat (Beyer et al., 2005) to,
e.g., calculate ABS, INS, and NOD. The end result is in both cases
metrics and numbers that can be used directly in our statistical ana-
lyzes.

5. Results

We now turn to our analysis of the gathered metrics data. We first
estimate the parameters of our coupling model (Section 5.1), then in
Section 5.3, and 5.4 we construct and discuss several linear regression
models involving the metrics. Finally in Section 5.5, we discuss some
limitations of our analysis.

5.1. Modeling of coupling
Using (1) with the data for all the 1,141 projects used in the study,

maximum likelihood estimation gives a = 0.614, b = 0.136, c=0.804
and σ2 = 0.0185 giving the model

k = 1 +
0.614

1 + 0.136n0.804 +
1

log n
· ε (2)

where ε is N(0, σ2 = 0.0185).
We have already shown this model in Figure 2 in Section 3.2.2. It

is also instructive to see directly how log E depends on log n. This
relationship is depicted in Figure 7.

5.2. Variable transformation
Turning to the distribution of calculated metrics, Figure 8 shows his-

tograms of of the product and architecture measures. The raw values of
four of the seven metrics have highly positively skewed distributions.
For two of these, AMC and ACP, it sufficed to take logarithms to pro-
duce approximately normal distributions (meaning that AMC and ACP
are approximately log-normally distributed), but for ACD and ROU
the distribution was still quite skewed even after taking logarithms.
For these we removed the skew using a Box-Cox power-transformation
(Box and Cox, 1964). The transformation is

y =
(x + α)λ

λ

where x is the raw variable and y is the transformed variable. The pa-
rameters α and λ were estimated by maximizing the normal likelihood
over all 1,141 projects, giving α = −0.038, λ = −1.94 for ROU and
α = −2.34, λ = 2.52 for ACD. Finally, we decided not to try to nor-
malize ODR. We note that it is a metric that depends highly on each
project’s culture of defect reporting.

10https://javacc.dev.java.net/

3.2 10 32 100 316 1000 3162

3.2

10

32

100

316

1000

3162

10000

#packages in project (log-scale)

pr
oj

ec
t-

de
pe

nd
en

ci
es

 (
lo

g-
sc

al
e)

Figure 7: Scatter plot of the relationship between number of packages in
project, n, and number of edges, E, in the package dependency graph for 1,141
studied projects. The gray line is the model (2) times log n

The histograms in Figure 8 indicate that after transformation all
the variables are essentially skew-free, and all except ODR are ap-
proximately normally distributed. To investigate normality further, the
number of projects out of the total of 1,141 with a variable that is more
extreme than 2 and 3 standard deviations from the mean have been
counted. These counts are shown in Table 4 together with the counts
that a pure normal distribution would give.

< −3σ < −2σ > 2σ > 3σ
Normal 1.5 26 26 1.5
box-cox(ROU) 0 32 30 4
log(AMC) 5 19 32 8
box-cox(ACD) 4 23 26 5
log(ACP) 0 12 35 11
AND 0 48 27 2
CEX 10 30 15 1

Table 4: Counts of Extreme Values of Metrics, All Projects

Note that ACP has a little heavy right tail, and CEX has a heavy
left tail, but apart from that the normality assumption holds reasonably
well. This indicates (approximately) that AND and CEX are normally
distributed, that AMC and ACP are log-normally distributed, and that
ROU and ACD have a truncated power-normal distribution.

5.3. Pairwise regression and model significance

For each of the 12 pairs of architecture and product metrics we have
investigated both a straight line and a parabolic linear regression model
taking the architecture metric as an independent variable. a 5% signif-
icance level, all pairs gave a model significantly different from a con-
stant model, according to a standard t-test. Figure 9 shows a scatter
plot of the metric pairs together with the models. The model coeffi-
cients and p-values for each model are also displayed in the figure. In
cases where the second order term was not significantly different from
0, a straight line model is given.

From the top left graph of Figure 9 we observe that projects with
ACP around 15–20 (minimum is at 14.7 for all projects, and at 18.9
for most mature ones) have significantly fewer open defects than the
projects where ACP is either low or high. In addition we see that the

7



All 1141 projects

282 most mature projects

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

CEX (coupling excess)

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

50

100

150

200

250

AND (average normalized distance)

1 1.8 3.2 5.6 10 18 32 56 100 178
0

100

200

300

400

ACP (average classes/package, log-scale)

1 1.2 1.5 1.8 2.2 2.9 3.8 5.8 18
0

100

200

300

400

ACD (average complexity density, Box-Cox-scale)

1 1.4 2 2.8 4 5.6 7.9 11 16 22 32 45 63
0

100

200

300

400

AMC (average methods/class, log-scale)

2 2.2 2.8 5 14 54 243 1238 7052
0

100

200

300

ROU (rate of usage, downloads/day, Box-Cox scale)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

ODR (open defect ratio)

Figure 8: Distribution of measurements for all and mature projects

most mature projects have a lower defect ratio. The defect ratio also
depends on AND in a similar way, for AND around 0.3 (minimum at
0.27 for all, 0.33 for mature) the defect ratio is on average significantly
lower than for low and high AND values. It is in particular interesting
to see that low AND values seem to give more defects, in view of the
principle put forward in Martin, that good architecture should have
normalized distance close to zero. Regarding the pair CEX-ODR we
see that for all projects the relationship is weak, but for the most mature
projects, it seems again to be advantageous to have close to average
coupling, rather than low or high (minimum is at 0.08 for mature).

Turning attention to ROU, we observe that the most downloaded
projects among the mature ones have a tendency to have high ACP.
The effect of AND on ROU matches its effect on ODR: For average
AND there are significantly more downloads than when AND is low
or high (the maxima occur at at 0.27 for all, 0.24 for mature projects).
The CEX-ROU graph indicates that projects with low coupling tend to
have fewer downloads. For the ACP and CEX relationships one might

have expected the opposite effect, i.e. that fewer classes per package
and low coupling might be beneficial.

The remaining two dependent variables are the internal product
metrics AMC and ACD. For high quality their values should be low.
For mature projects the effect of ACP on these metrics matches the
effect of ACP on defect ratio: average ACP is beneficial (minima at
6.7 and 7.7 respectively). For all projects the effect is less pronounced.
Regarding the effect of AND and CEX on ACD, we again find the
effect to be as expected, and similar to the effect of these metrics on
ODR (minima at 0.35 and −0.04 for all projects; 0.42 and 0.01 for ma-
ture ones). The dependence of AMC on AND appears minimal, but its
dependence on CEX is however as one might have expected: both low
AND and low CEX should be favorable.

5.4. Multiple regression models
In addition to the models shown in Figure 9, we have constructed

multiple regression models, explaining architecture metrics in terms of

8



Dependent
variable

Project
set

Model variables, model coefficients, and p-values

Constant CEX CEX2 p log(ACP) log(ACP)2 p AND AND2 p R2

ODR All 0.57 -0.03 -0.15 0.61 -0.27 0.11 8×10−3 -1.02 1.87 3×10−8 4.3%
Mature 0.57 -0.02 0.51 0.05 -0.30 0.12 0.16 -1.12 1.72 0.05 7.4%

box-cox(ROU) All 1.18 0.83 0.02 0.11 0.59 4.47 -8.44 0.01 1.5%
Mature 2.45 1.20 0.02 0.72 0.02 0.40 -2.16 0.54 5.7%

log(AMC) All 0.88 0.15 3×10−5 0.08 -0.02 0.04 -0.14 4×10−3 3.3%
Mature 1.22 0.36 1×10−7 -0.60 0.32 9×10−3 -0.17 0.13 12.9%

box-cox(ACD) All 0.39 0.001 0.000 0.82 -0.01 0.01 2×10−7 2.8%
Mature 0.40 -0.005 0.003 0.04 -0.01 0.01 0.02 5.6%

Table 5: Multivariate regression models, explaining architecture metrics in terms of product metrics. Blanks in the table indicate that the corresponding term was
non-significant for both project sets. When both a linear term and a squared term are present, the p-value is joint for both terms. It measures whether the addition of
these two terms improves the model significantly.

product metrics, using step-wise regression (see e.g. Lindgren (1976)).
The resulting models are shown in Table 5. As an example, the the

complete ODR model for all projects is

ODR = 0.57 − 0.03 ·CEX − 0.15 ·CEX2

− 0.27 · log(ACP) + 0.11 · log(ACP)2

− 1.02 · AND + 1.87 · AND2

Blanks in the table indicate that the corresponding term turned out
to be non-significant for both project sets. When both a linear term
and a squared term are present, the p-value is joint for both terms. It
measures whether the addition of these two terms improves the model
significantly.

To facilitate the comparison between projects sets, a term is in-
cluded if it is significant for either projects set. Another convention
that is followed is to include a linear term whenever the squared term
is included (regardless of whether the linear term is significant).

The column headed R2 shows the proportion of the total variance of
the dependent variable which is explained by the models.

It is interesting to note that except for the ACD-model, all the ar-
chitecture metrics are significant components of the models. This
means that their combined effect on the corresponding product met-
ric is larger than their effect in the simple regression models shown
in Figure 9. However it must be admitted that the R2-values are not
very impressive. Even though the p-values are highly significant (since
many projects have been analyzed), there is a large amount of spread
in our data. The models can be used to predict average product metrics
with confidence, but they would not be very useful to predict metrics
for single projects.

5.5. Limitations

There are a number of important limitations to our study that may
influence its validity. Threats to validity are sometimes categorized
as construct, internal and external (Carver et al., 2004). Concerning
construct validity,

• Our analysis across projects is based on average values. Concas
et al. (2007) argue that system properties (such as WMC) often
follow a power law or a log-normal distribution. Thus it may
be problematic to work with the mean (or standard deviation) of
these properties to characterize whole systems or projects. While
working with means (or standard deviations) may thus be rep-
resentative of a known distribution, we did not assume specific

distributions. Further research could look also at specific distri-
butions of these metrics for the projects investigated.

• The analysis is automated. This means that we did not check,
e.g., if the downloaded source code could compile or if bug re-
porting was consistent across projects. The large set of projects is
meant to counter the effects of this. A related problem is the step
to filter the gathered data: this is partially based on information
imposed by the project developers such as number of developers
or development status. In particular the latter is highly subjective
(and typically just monotonically ascending). A more complete
analysis of the project status, could be performed by mining the
FLOSSMole database. (Howison et al., 2006).

• We have analyzed a limited number of metrics. In particular,
the range of available architecture metrics appears limited and
further research would be needed in that area. In relation to this,
there is a current interest in software architecture research in non-
product aspects of software architecture design, e.g., in design
decisions (Jansen and Bosch, 2005) and organizations (Clements
et al., 2007)

• The CEX metric is dependent on the set of changeable param-
eters, a, b, and c that are estimated based on a particular set of
projects. It would be worthwhile to try to simplify the coupling
model to obtain some sort of measure that would be reasonably
size-independent, but simpler than the current CEX definition,
and hopefully more likely to apply to other project sets

• A possible problem of the ODR metrics is that failure reporting
is not uniform across projects which implies that the data about
defects may not be accurate or timely. This is, however, an im-
portant metric of quality and given that we analyze a large num-
ber of projects, the inaccuracies may even out. Furthermore, we
exclude project that do not report defects using SourceForge in
our analysis

Internal validity deals with the question of whether cause and effect
relationships discovered in a study are real.

• One reason for failure to meet internal validity is that statistical
tests may fail. Either one finds relationships that are really nonex-
istent (type I error) or real relationships are wrongly deemed non-
significant (type II error). With the standard statistical tests and
5% significance level we use, the probability of making a type I
error is 5%, however, the probability of type II errors is difficult
to estimate.

9



−0.6 −0.4 −0.2 0 0.2 0.4

1

1.3

1.7

2.2

3.1

4.9

18

y = 0.39−0.00022*x−0.0023*x2 (p=0.4,0.18)

CEX (coupling excess)

A
C

D
 (

av
g.

 c
om

pl
ex

ity
 d

en
si

ty
, B

ox
-C

ox
 s

ca
le

)

y = 0.39−0.000016*x−0.00057*x2 (p=0.97,0.82)

 

 
All 1141 projects
282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

1

1.3

1.7

2.2

3.1

4.9

18

y = 0.39−0.0090*x+0.013*x2 (p=9.2e−8,2.8e−5)

AND (avg. normalized distance)

A
C

D
 (

av
g.

 c
om

pl
ex

ity
 d

en
si

ty
, B

ox
-C

ox
 s

ca
le

)

y = 0.39−0.010*x+0.012*x2 (p=0.0085,0.12)

 

 
All 1141 projects
282 most mature projects

3.2 10 32 100

1

1.3

1.7

2.2

3.1

4.9

18

y = 0.39+0.000096*x+0.000091*x2 (p=0.39,0.84)

ACP (avg. classes/package, log scale)

A
C

D
 (

av
g.

 c
om

pl
ex

ity
 d

en
si

ty
, B

ox
-C

ox
 s

ca
le

)

y = 0.39−0.0055*x+0.0031*x2 (p=0.02,0.015)

 

 
All 1141 projects
282 most mature projects

−0.6 −0.4 −0.2 0 0.2 0.4

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.91+0.15*x (p=1e−5)

CEX (coupling excess)

A
M

C
 (

av
g.

 m
et

ho
ds

/c
la

ss
, l

og
 s

ca
le

)

y = 0.92+0.33*x (p=3.6e−7)

 

 
All 1141 projects
282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.94−0.12*x (p=0.011)

AND (avg. normalized distance)

A
M

C
 (

av
g.

 m
et

ho
ds

/c
la

ss
, l

og
 s

ca
le

)

y = 0.92−0.028*x (p=0.81)

 

 
All 1141 projects
282 most mature projects

3.2 10 32 100

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.80+0.16*x−0.040*x2 (p=0.00017,0.32)

ACP (avg. classes/package, log scale)

A
M

C
 (

av
g.

 m
et

ho
ds

/c
la

ss
, l

og
 s

ca
le

)

y = 1.1−0.46*x+0.28*x2 (p=0.0053,0.015)

 

 
All 1141 projects
282 most mature projects

−0.6 −0.4 −0.2 0 0.2 0.4

2

2.3

3.9

14

87

711

7052

y = 1.8+0.98*x (p=0.0045)

CEX (coupling excess)R
O

U
 (

ra
te

 o
f u

sa
ge

 (
do

w
nl

oa
ds

/d
ay

),
 B

ox
-C

ox
 s

ca
le

)

y = 3.1+1.3*x (p=0.0036)

 

 
All 1141 projects
282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

2

2.3

3.9

14

87

711

7052

y = 1.2+5.1*x−9.2*x2 (p=0.004,0.00089)

AND (avg. normalized distance)R
O

U
 (

ra
te

 o
f u

sa
ge

 (
do

w
nl

oa
ds

/d
ay

),
 B

ox
-C

ox
 s

ca
le

)

y = 2.8+2.5*x−5.3*x2 (p=0.5,0.31)

 

 
All 1141 projects
282 most mature projects

3.2 10 32 100

2

2.3

3.9

14

87

711

7052

y = 1.6+0.17*x (p=0.37)

ACP (avg. classes/package, log scale)R
O

U
 (

ra
te

 o
f u

sa
ge

 (
do

w
nl

oa
ds

/d
ay

),
 B

ox
-C

ox
 s

ca
le

)

y = 2.2+0.91*x (p=0.002)

 

 
All 1141 projects
282 most mature projects

−0.6 −0.4 −0.2 0 0.2 0.4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.30−0.092*x−0.16*x2 (p=0.082,0.34)

CEX (coupling excess)

O
D

R
 (

op
en

 d
ef

ec
t r

at
io

)

y = 0.22−0.095*x+0.60*x2 (p=0.0023,0.01)

 

 
All 1141 projects
282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.42−1.0*x+1.9*x2 (p=5.5e−9,7.2e−10)

AND (avg. normalized distance)

O
D

R
 (

op
en

 d
ef

ec
t r

at
io

)

y = 0.45−1.4*x+2.2*x2 (p=0.0041,0.0034)

 

 
All 1141 projects
282 most mature projects

3.2 10 32 100
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.48−0.34*x+0.15*x2 (p=0.0014,0.0018)

ACP (avg. classes/package, log scale)

O
D

R
 (

op
en

 d
ef

ec
t r

at
io

)

y = 0.44−0.34*x+0.14*x2 (p=0.1,0.26)

 

 
All 1141 projects
282 most mature projects

Figure 9: Analysis of relationships between product and architecture metrics (When two p-values are given the first applies to the x coefficient and the second
applies to the x2 coefficient)

• Maybe the most severe limitation of our study is that we are at-
tempting to explain software quality by software architecture, but
have only limited description of the architecture. We are forced
to make do with metrics that describe the architecture at best par-
tially. Our results, that several of the software quality measures
are significantly related with the architecture metrics, may well
be real cause-and-effect relationships, but it is quite possible that,
in some cases, both the quality and the architecture metric are the
result of some unknown cause. There is not really an easy way

around this limitation.

• The CEX metric is dependent on the set of changeable param-
eters, a, b, and c that are estimated based on a particular set of
projects. It would be worthwhile to try to simplify the coupling
model to obtain some sort of measure that would be reasonably
size-independent, but simpler than the current CEX definition,
and hopefully more likely to apply to other project sets

Finally regarding external validity:

10



• The projects that we surveyed are all open source projects and
moreover open source projects that are hosted on SourceForge.
While the results may not be generalizable to closed source
projects, this points to an area of further research

6. Conclusions

We carried out a review of some metrics on software design and
quality that have been proposed in the scientific literature, especially
as applied to (large) Java projects. We classified these metrics into ar-
chitecture metrics, which try to measure the high-level design of soft-
ware, and product metrics, which try to measure software implemen-
tation. Seven metrics were computed for a large body of open source
Java projects, and subsequently analyzed statistically. To our knowl-
edge this is the first study of this type.

An important issue in software architecture is that of package cou-
pling, i.e. the degree to which the packages of a project depend on one
another. We hypothesize that the dependency graph becomes sparser
and sparser with project size. We have modeled the effect as E = nk,
where n is the number of packages and E is the number of edges in
the graph, and find that for small projects k is around 1.5 and for the
largest projects that we analyzed it is around 1.25. Our model then
assumes that k tends to 1 with increasing n. One of our architecture
metrics, CEX, is based on this model, but the others (classes per pack-
age, ACP, and normalized distance, AND) are based on previously
proposed metrics. As product metrics we computed open defect ratio,
ODR, rate of usage, ROU, methods per class, AMC, and cyclomatic
complexity, ACD, but all of these are (or have been proposed to be)
measures of software quality. For six of these metrics (all but ODR)
we established an approximate probability distribution, valid for our
data set.

The analyzed projects consist of 1,141 open source software
projects selected from the SourceForge repository. Criteria for inclu-
sion in the study included that the projects were pure Java projects
and not brand new, used SourceForge to keep track of bugs, had at
least 2000 source lines of code, had at least two developers, had been
downloaded at least twice daily on average, and had reached devel-
opment status beta. In addition we selected a subset of 282 “mature”
projects, which had at least four developers, had been downloaded at
least seven times daily, and had reached development status stable.

For both sets of projects (i.e., all 1,141, and the 282 mature ones) we
constructed regression models for all 12 pairs of product-architecture
metrics as well as multiple regression models for all three architec-
ture metrics. In all cases statistically significant relationships were
discovered. The relationships are in general stronger for the mature
set. For this set and ODR all three architecture metrics give rise to
convex parabolic relationships, meaning that when these metrics give
medium values, less error prone software results than when the met-
ric values are extreme, whether low or high. ODR as predicted by the
models ranges from a minimum of around 0.2 to a maximum of around
0.4. The relationship is similar for both ACP and AND in the larger
project set.

There is also a significant relationship between the architecture met-
rics and the other product metrics ROU, AMC and ACD. For the ma-
ture set, medium values of ACP go together with low values of AMC
and ACD (both pointing to high quality), and for both project sets
medium values of AND give high ROU and low ACD (again point-
ing to high quality). In other cases the effect is not as conclusive, and
in a few cases it is even counterintuitive (in particular for the pairs
CEX-ROU and CEX-AMC).

In general, the effect of the architecture metrics on the product met-
rics agrees with what has been proposed in the literature. The most

notable exception is AND. It was formulated as ideally being 0, but
our results indicate that it is better to strive for a “compromise” on av-
erage when designing architecture, e.g., a value around 0.3. A similar
tentative conclusion can be reached for ACP: to produce quality soft-
ware one should aim for about 10 classes per package on average. The
effect of CEX on quality is more inconclusive.

In summary, we have presented evidence of an effect of architecture
quality on product quality in a set of 1,141 open source Java projects.
Further research is needed to address the limiting threats to validity
and to be able to make predictions on a per-project basis, but the effect
we have found is quite significant statistically, and may be relied on
to draw conclusions about expected software quality given a set of
projects.

References

Alexander, C., 1979. The timeless way of building. Oxford University Press,
USA.

Basili, V., Briand, L., Melo, W., Oct 1996. A validation of object-oriented de-
sign metrics as quality indicators. Software Engineering, IEEE Transactions
on 22 (10), 751–761.

Bass, L., Clements, P., Kazman, R., 2003. Software architecture in practice,
2nd Edition. Addison-Wesley Professional.

Beecher, K., Boldyreff, C., Capiluppi, A., Rank, S., 2007. Evolutionary
success of open source software: an investigation into exogenous drivers.
In: Proceedings of the Third International ERCIM Symposium on Software
Evolution (Software Evolution 2007). pp. 124–136.
URL ftp://ftp.umh.ac.be/pub/ftp_infofs/2007/
ERCIM-Evol2007.pdf

Beyer, D., Noack, A., Lewerentz, C., 2005. Efficient relational calculation for
software analysis. IEEE Transactions on Software Engineering 31 (2), 137–
149.

Box, G., Cox, D., 1964. An analysis of transformations. Journal of the Royal
Statistical Society. Series B 26, 211–252.

Carver, J., VanVoorhis, J., Basili, V., August 2004. Understanding the impact of
assumptions on experimental validity. In: Empirical Software Engineering,
2004. ISESE ’04. Proceedings. 2004 International Symposium on. pp. 251
– 260.

Chidamber, S., Kemerer, C., Jun 1994. A metrics suite for object oriented de-
sign. IEEE Transactions on Software Engineering 20 (6), 476–493.

Clements, P., Kazman, R., Klein, M., 2002. Evaluating software architectures:
methods and case studies. Addison-Wesley Professional.

Clements, P., Kazman, R., Klein, M., Devesh, D., Reddy, S., Verma, P., Jan.
2007. The duties, skills, and knowledge of software architects. In: Proceed-
ings of The Sixth Working International IEEE/IFIP Conference on Software
Architecture (WICSA 2007). pp. 20–23.

CMMI Product Team, 2006. CMMI for Development, Version 1.2. Tech. Rep.
CMU/SEI-2006-TR-008, Software Engineering Institute, Carnegie Mellon
University.

Collins-Sussman, B., Fitzpatrick, B. W., Pilato, C. M., 2009. Version Control
with Subversion. For Subversion 1.4. Red-Bean online version. Compiled
from r2866.

Concas, G., Marchesi, M., Pinna, S., Serra, N., 2007. Power-laws in a large
object-oriented software system. IEEE Transactions on Software Engineer-
ing 33 (10), 687–708.

Dobrica, L., Niemela, E., 2002. A survey on software architecture analysis
methods. IEEE Transactions on software Engineering 28 (7), 638–653.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design patterns: ele-
ments of reusable object-oriented software. Addison-wesley Reading, MA.

Garlan, D., Shaw, M., 1993. An introduction to software architecture. Advances
in Software Engineering and Knowledge Engineering 1, 1–40.

Garvin, D. A., 1984. What does "product quality" really mean? Sloan Manage-
ment Review 26 (1), 25–43.

Gill, G., Kemerer, C., Dec 1991. Cyclomatic complexity density and soft-
ware maintenance productivity. Software Engineering, IEEE Transactions
on 17 (12), 1284–1288.

Hansen, K. M., Jónasson, K., Neukirchen, H., July 2009. An empirical study
of open source software architectures’ effect on product quality. Tech. Rep.

11



VHI-01-2009, Engineering Research Institute, University of Iceland, http:
//www.hi.is/~kmh/doc/vhi-01-2009.pdf.

Herraiz, I., González-Barahona, J. M., Robles, G., 2008. Determinism and evo-
lution. In: Hassan, A. E., Lanza, M., Godfrey, M. W. (Eds.), Fifth Interna-
tional Workshop on Mining Software Repositories, MSR 2008 (ICSE Work-
shop), Leipzig, Germany, May 10-11, 2008, Proceedings. ACM, pp. 1–10.

Howison, J., Conklin, M., Crowston, K., 2006. FLOSSmole: A collaborative
repository for FLOSS research data and analyses. International Journal of
Information Technology and Web Engineering 1 (3), 17–26.

ISO/IEC, 2001. Software engineering – Product quality – Part 1: Quality
model. ISO/IEC 9126-1:2001.

ISO/IEC, 2004. Information technology – Process assessment – Part 1: Con-
cepts and vocabulary. ISO/IEC 15504-1:2004.

Jansen, A., Bosch, J., 2005. Software architecture as a set of architectural de-
sign decisions. In: Proceedings of the 5th Working IEEE/IFIP Conference
on Software Architecture (WICSA 2005). pp. 109–120.

Kan, S., 2002. Metrics and models in software quality engineering. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA.

Kazman, R., Klein, M., Clements, P., August 2000. Atam: Method for
architecture evaluation. Tech. rep., CMU/SEI.
URL http://www.sei.cmu.edu/publications/documents/00.
reports/00tr004.html

Kitchenham, B., Pfleeger, S. L., Jan. 1996. Software quality: The elusive target.
IEEE Software, 12–21.

Lindgren, B. W., 1976. Statistcal Theory, 3rd Edition. McMillan, New York.
McCabe, T. J., 1976. A Complexity Measure. IEEE Transactions on Software

Engineering 2 (4), 308–320.
Perry, D., Wolf, A., 1992. Foundations for the study of software architecture.

ACM SIGSOFT Software Engineering Notes 17 (4), 40.
Shepperd, M., Mar 1988. A critique of cyclomatic complexity as a software

metric. Software Engineering Journal 3 (2), 30–36.
Taylor, R. N., Medvidovic, N., Dashofy, E. M., 2009. Software Architecture:

Foundations, Theory, and Practice. Wiley.
Tyree, J., Akerman, A., 2005. Architecture decisions: Demystifying architec-

ture. IEEE software, 19–27.
Wong, K., July 1996. Rigi User’s Manual. Department of Computer Science,

University of Victoria, http://www.rigi.cs.uvic.ca/downloads/
rigi/doc/user.html.

Zhang, H., Tan, H. B. K., Marchesi, M., 2009. The distribution of program sizes
and its implications: An eclipse case study. CoRR abs/0905.2288.

Klaus Marius Hansen is a professor of Software Development at the Uni-
versity of Copenhagen. He received a Ph.D. degree in Computer Science from
Aarhus University in 2002 and focuses on software architecture research in par-
ticular in relation to pervasive and dependable computing.

Kristjan Jonasson is a professor and head of department at the Department
of Computer Science of the University of Iceland. He received a Ph.D. degree
in Numerical Analysis from the University of Dundee in Scotland in 1985.
His research interests are in scientific computing, numerical optimization and
applied statistics.

Helmut Neukirchen is associate professor for Computer Science at the Uni-
versity of Iceland. He received a Ph.D. degree in Computer Science from the
University of Göttingen in 2004 and a Computer Science diploma degree from
the RWTH Aachen University in 1999. His research interest are in the domains
of software quality, distributed systems, and agile software development.

12


