
Does Software Architecture Matter?

An empirical study of the effect of software architecture
on open source software product quality

Klaus Marius Hansen
University of Iceland
Reykjavík, Iceland

kmh@hi.is

Kristján Jónasson
University of Iceland
Reykjavík, Iceland
jonasson@hi.is

Helmut Neukirchen
University of Iceland
Reykjavík, Iceland
helmut@hi.is

ABSTRACT
Software architecture is concerned with the structure of soft-
ware systems and is generally agreed to influence software
quality. Even so, little empirical research has been per-
formed on the relationship between software architecture
and software quality. Based on 1,141 open source Java
projects, we calculate three software architecture metrics
(measuring classes per package, normalized distance, and
degree of coupling) and analyze to which extent these met-
rics are related to defect ratio and download rate. We con-
clude that there are a number of significant relationships. In
particular, the number of open defects depend significantly
on all our architecture measures.

1. INTRODUCTION
It is often claimed that software architecture enables (or in-
hibits) software quality. However, this claim has not been
extensively validated empirically. While much work has fo-
cused on measuring software quality, little has focused on
measuring software architecture. In the work reported here,
we investigated the software architecture of open source soft-
ware projects, defined metrics for software architecture, and
analyzed to which extent they correlated with software qual-
ity metrics, i.e. whether the claim that software architecture
enables software quality holds or not.

Concerning software architecture, many definitions can be
found. An influential and representative definition by Bass
et al. [1] states that:

The software architecture of a computing system
is the structures of the system, which comprise
software elements, the externally visible prop-
erties of those elements, and the relationships
among them

In other words, software architecture is concerned with struc-
tures (which can, e.g., be development or runtime struc-
tures) and abstracts away the internals of elements of struc-
tures by only considering externally visible properties.

Recently, focus has also been on decisions made when defin-
ing system structures. This leads to definitions such as:

A software system’s architecture is the set of prin-
cipal design decisions made about the system [16].

We are here concerned with a large set of open source projects
and thus necessarily have to rely on (semi-)automated ana-
lyzes. Thus we take the definition of Bass et al. as our basis
for a definition of software architecture.

Concerning software metrics, the IEEE Standard Glossary
of Software Engineering Terminology” [11] provides the fol-
lowing definition:

Metric: a quantitative measure of the degree to
which a system, component, or product possesses
a given attribute

Software metrics can be calculated based on source code,
but also based on other meta-data, e.g., bug data bases or
download statistics. In the remainder, we distinguish be-
tween metrics that aim at measuring attributes of software
architecture and metrics that aim at measuring products, in
particular product quality. While the later kind of metrics
are widely practiced and researched [13], not much work on
software architecture metrics has been published so far.

The main contribution of this paper is the analysis of a
huge body of software projects and the found relationships
between product quality metrics and software architecture
metrics. Specifically, the data that we collected were meta-
data on 21,904 projects and source code from 1,570 of these.
By a further filtering of projects that were considered too
small to be representative, 1,141 Java projects were investi-
gated in detail. Based on the meta-data and source code, we
computed and analyzed the results of various metrics. As
part of this, we introduced the Degree of Coupling (DOC)
metric for measuring the coupling aspect of a (package) ar-
chitecture.

In this paper, we present just a summary of the most in-
teresting findings of our investigation. For more detailed
results that involve further metrics, please refer to our tech-
nical report that is available on-line [9].

The rest of this paper is structured as follows: following this
introduction, Section 2 presents the used metrics and how
the investigated data were gathered and processed. Our
analysis of the obtained data is presented in Section 3. Fi-
nally, Section 4 discusses our results and concludes our pa-
per.



2. MATERIALS AND METHODS
We analyzed data from Java projects in the SourceForge
open source repository. In doing so, our method consisted
of the following steps:

1. Gather data in the form of meta-data and source code
of projects,

2. Apply metrics on gathered data

3. Analyze measures statistically

4. Discuss and conclude.

For readability, we describe our choice of metrics next (Sec-
tion 2.1) followed by a description of data gathering and
measurement (Section 2.2). Section 3 presents our statisti-
cal analysis and results.

2.1 Choice of Metrics
Our goal is to compare aspects of software architecture and
software product quality. In distinguishing, we regard “soft-
ware architecture” metrics as software metrics that pertain
to overall structure, i.e., (in an object-oriented context) that
do not measure individual objects, classes, or statements.

2.1.1 Architecture Metrics
We did a systematic literature review of the METRICS,
MSR, and WICSA conferences [9], but found few specific
architecture metrics. We, however, identified three metrics
that we will use in the context of this paper; they are listed
in Table 1. To compare across a number of projects, we
need a single measure for each project. Concas et al. [7]
note that many system properties may not be normally dis-
tributed, but we chose to average property measures since
we do not have any a priori assumptions of the distribution
of our measurements.

The AND metric in the table is based on “normalized dis-
tance”which is defined as being the absolute value of the sum
of “instability” and “abstractness” minus 1, i.e., the value is
normalized to be in the range 0 to 1 [15]. “Instability” is the
number of outgoing dependencies from a package divided by
the number of outgoing plus incoming dependencies. “Ab-
stractness” is the number of abstract classes in a package

Metric Full
Name

Explanation Source

ACP Average
Classes
per Pack-
age

The total number
of classes divided
by the total num-
ber of packages

[5] (adapted
for software
architec-
ture)

AND Average
Nor-
malized
Distance

A measure of
how abstract and
instable packages
are on average

[15]

DOC Degree Of
Coupling

The degree to
which packages
are coupled to
other packages

Own, de-
scribed more
detailed in
[9]

Table 1: Architecture metrics

divided by the number of abstract plus concrete classes. A
related principle of [15] states that “normalized distance”
should be close to 0 such that, e.g., if a package has high
instability, then it should not be abstract.

We define the DOC metric based on the hypothesis that
the more coupled a (package) architecture is, the harder
a project is to maintain. If we consider the dependency
graph of the packages of the project (and include dependen-
cies from packages to themselves), a graph of n packages
will have between n and n2 edges. That is, the number of
edges will be, E = nk with k between 1 and 2. The value
of k should tend to 1 as the size of a project grows (since
k = logE/ logn, the average number of imports per package
would otherwise grow out of limit with the project size).

We defined a model that has flexibility to describe our data
while giving k ≈ 1 for large n and having a finite limit for n
going to 0. A simple function that fulfills this is a rational
function on the form 1 + a/(1 + bn). To add flexibility, we
add an exponent, c, on n, which together with an error term
gives the model:

k = 1 +
a

1 + bnc
+

1

logn
· ε (1)

where ε is an N(0, σ2)-distributed error term. Notice that
the error term tends to 0 with increasing n.

Maximum likelihood estimation can now be used to deter-
mine the parameters a, b, c, and σ2; we return to this in the
results section, Section 3. DOC can then be defined as the
model residual

ε = logE − (1 +
a

1 + bnc
) logn (2)

2.1.2 Product Metrics
We note that in [9], we also analyze product metrics related
to the number of methods per class and cyclomatic complex-
ity of methods.

For “product quality”, we identified two metrics that we use
in the context of this paper; Table 2 summarizes the product
metrics. Specifically, we consider the number of (reported)
open defects divided by the total number of (reported) de-
fects in the project historically (ODR) and the number of
downloads of the project per day (ROU). We thus look at
quality from a manufacturing-based/product-based and a
value-based perspective of quality [8].

Metric Full Name Explanation

ODR Open Defect
Ratio

The ratio of open
defects to the to-
tal number of de-
fects

ROU Rate Of Us-
age

The number
of downloads
per month the
project has
existed

Table 2: Product metrics



2.2 Data Gathering and Metrics Calculation
We collected meta-data (such as name, number of develop-
ers, development status, project age, and number of down-
loads) of the 21,094 most highly ranked Java projects on
2009-03-17 from SourceForge. These characteristics are il-
lustrated in Figure 1.

Based on the meta data we defined a set of“relevant”projects
for which we attempted to gather source code. Source code
was gathered by either downloading all modules (for those
projects that use CVS for storing the source code) or assum-
ing that the project followed the “trunk” best practice (for
those projects that use SVN for storing the source code).

1 2 3 4 5 6 7 8 9 10 11−20 21−30 31−40 41−50 > 50
0

2000

4000

6000

8000

10000

12000

Number of developers

Planning Pre−alpha Alpha Beta Stable Mature Inactive
0

1000

2000

3000

4000

5000

6000

Development status

< 1 1!2 2!3 3!4 4!5 5!6 6!7 7!8 8!9
0

500

1000

1500

2000

2500

3000

3500

4000

Project age (years)

< 0.01 0.01−0.1 0.1−1 1−10 10−100 > 100
0

2000

4000

6000

8000

10000

Average number of downloads per day

Figure 1: Meta-data characteristics of 21,904
SourceForge Java projects. Number of developers,
development status, project age and download rate

Relevance
filtering (“All
projects”)

Classification
filtering (“Ma-
ture projects”)

Num of defects ≥ 1 ≥ 1
Project age (days) ≥ 180 ≥ 180
SLOC ≥ 2000 ≥ 2000
Development status 4, 5, 6 5, 6
Downloads per day ≥ 2 ≥ 7
Number of dev. ≥ 2 ≥ 4

Total num of projects 1,141 282

Table 3: Filtering and classification summary

The download was done on 2009-03-30. For these projects
we again applied a filter so that we ended up with two groups
(where “mature projects” is a subset of “all projects”) as
shown in Table 3. For source lines of code (SLOC) we use
physical source lines of code, which is the total number of
non-blank, non-comment lines in the code. The criteria were
chosen to end up with projects for which software architec-
ture could be hypothesized to play a role.

Our metrics were calculated either directly from meta-data
(for ODR and ROU) or based on the source code downloaded
from SourceForge. We used four techniques to gather facts
from project source code:

• We used Python and regular expressions on the con-
tents of Java files to populate an (SQLite) database
with data on public classes, packages, and “import”s.
We only detect package level imports that are due to
“import” statements

• We used SLOCCount1 to calculate SLOC. This data
is also put into a database

• We use JavaNCSS2 to calculate cyclomatic complexity
and method count of projects. This data is exported
to Rigi Standard Format [17]

• Finally, we use a Java parser and analyzer (built upon
the Java grammar included in the JavaCC3) to ex-
tract data on inheritance (and implementation) and
on classes (and interfaces) also in Rigi format

Thus, effectively, we have two types of relational data sets: i)
database relations and ii) Rigi relations. We initially worked
with database relations only, but found out (in line with
Beyer et al. [3]) that relational queries were inefficient in
handling our data and thus also worked with data in Rigi
format and used Crocopat [3] on this data.

3. RESULTS
We first estimated the parameters of our DOC model. Using
equation (1) with the data for all the 1,141 projects used in
the study, maximum likelihood estimation gives a = 0.614,

1http://www.dwheeler.com/sloccount/
2http://javancss.codehaus.org/
3http://javacc.dev.java.net/

http://www.dwheeler.com/sloccount/
http://javancss.codehaus.org/
http://javacc.dev.java.net/


3.2 10 32 100 316 1000 3162 10000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

#packages in project

lo
g(

pr
oj

ec
t−

de
pe

nd
en

cie
s)

 / 
lo

g(
#p

ac
ka

ge
s−

in
−p

ro
je

ct
)

Figure 2: Scatter plot of the relationship between
project size, n, and coupling exponent, k, for 1,141
studied projects. The gray line is the model (1) for
the parameters estimated

b = 0.136, c=0.804 and σ2 = 0.0185 yielding the model

k = 1 +
0.614

1 + 0.136n0.804
+

1

logn
· ε (3)

where ε is N(0, σ2 = 0.0185). The model is illustrated in
Figure 2 with data for the 1,141 projects we studied.

Next, for the gathered metrics data, Figure 3 shows his-
tograms of of the architecture measures and Figure 4 shows
histograms of the product measures. The raw values of two
of the five metrics have highly positively skewed distribu-
tions. For one of these, ACP, it sufficed to take logarithms to
produce approximately normal distributions (meaning that
ACP is approximately log-normally distributed). For ROU
the distribution was still quite skewed even after taking log-
arithms. This skew was removed using a Box-Cox power-
transformation [4] (meaning that, approximately, ROU has
a truncated power-normal distribution). Finally, we decided
not to try to normalize ODR. We note that it is a metric that
depends highly on each project’s culture of defect reporting.

For each of the six pairs of architecture and product metrics
we have investigated both a straight line and a parabolic
linear regression model taking the architecture metric as an
independent variable. Using a 5% significance level, all pairs
gave a model significantly different from a constant model.
Figure 5 shows a scatter plot of the metric pairs together
with the models (in cases where the second order term was
not significantly different from 0, a straight line model is
given).

From the top left graph of Figure 5 we observe that projects
with ACP around 15–20 (minimum is at 14.7 for all projects,
and at 18.9 for most mature ones) have significantly fewer
open defects than the projects where ACP is either low or
high. In addition we see that the most mature projects
have a lower defect ratio. The defect ratio also depends on
AND in a similar way, for AND around 0.3 (minimum at
0.27 for all, 0.33 for mature) the defect ratio is on average
significantly lower than for low and high AND values. It is
in particular interesting to see that low AND values seem
to give more defects, in view of the principle put forward in
Martin [15], that good architecture should have normalized

All 1141 projects

282 most mature projects

!0.7!0.6!0.5!0.4!0.3!0.2!0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

DOC (degree of coupling)

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

50

100

150

200

250

AND (average normalized distance)

1 1.8 3.2 5.6 10 18 32 56 100 178
0

100

200

300

400

ACP (average classes/package, log!scale)

1 1.2 1.5 1.8 2.2 2.8 3.8 5.7 18
0

100

200

300

400

ACD (average complexity density, Box!Cox!scale)

1 1.4 2 2.8 4 5.6 7.9 11 16 22 32 45 63
0

100

200

300

400

AMC (average methods/class, log!scale)

2 2.2 2.8 5 14 54 243 1238 7052
0

100

200

300

ROU (rate of usage, downloads/day, Box!Cox scale)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

ODR (open defect ratio)

Figure 3: Distribution of measurements of architec-
ture metrics (ACP, AND, DOC)

All 1141 projects

282 most mature projects

!0.7!0.6!0.5!0.4!0.3!0.2!0.1 0 0.1 0.2 0.3 0.4 0.5
0

100

200

300

DOC (degree of coupling)

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

50

100

150

200

250

AND (average normalized distance)

1 1.8 3.2 5.6 10 18 32 56 100 178
0

100

200

300

400

ACP (average classes/package, log!scale)

1 1.2 1.5 1.8 2.2 2.8 3.8 5.7 18
0

100

200

300

400

ACD (average complexity density, Box!Cox!scale)

1 1.4 2 2.8 4 5.6 7.9 11 16 22 32 45 63
0

100

200

300

400

AMC (average methods/class, log!scale)

2 2.2 2.8 5 14 54 243 1238 7052
0

100

200

300

ROU (rate of usage, downloads/day, Box!Cox scale)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

ODR (open defect ratio)

Figure 4: Distribution of measurements of product
metrics (ODR, ROU)

distance close to zero. Regarding the pair DOC-ODR we
see that for all projects the relationship is weak, but for the
most mature projects, it seems again to be advantageous
to have close to average coupling, rather than low or high
(minimum is at 0.08 for mature).



3.2 10 32 100

!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.48!0.34*x+0.15*x
2
 (p=0.0014,0.0018)

ACP (avg. classes/package, log scale)

O
D

R
 (

o
p
e
n
 d

e
fe

c
t 
ra

ti
o
)

y = 0.44!0.34*x+0.14*x
2
 (p=0.1,0.26)

 

 
All 1141 projects

282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.42!1.0*x+1.9*x
2
 (p=5.5e!9,7.2e!10)

AND (avg. normalized distance)

O
D

R
 (

o
p
e
n
 d

e
fe

c
t 
ra

ti
o
)

y = 0.45!1.4*x+2.2*x
2
 (p=0.0041,0.0034)

 

 
All 1141 projects

282 most mature projects

!0.6 !0.4 !0.2 0 0.2 0.4

!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

y = 0.30!0.092*x!0.16*x
2
 (p=0.082,0.34)

DOC (degree of coupling)

O
D

R
 (

o
p
e
n
 d

e
fe

c
t 
ra

ti
o
)

y = 0.22!0.095*x+0.60*x
2
 (p=0.0023,0.01)

 

 
All 1141 projects

282 most mature projects

3.2 10 32 100

2

2.2

2.8

5

14

54

243

1238

7052

y = 1.6+0.17*x (p=0.37)

ACP (avg. classes/package, log scale)R
O

U
 (

ra
te

 o
f 
u
s
a
g
e
 (

d
o
w

n
lo

a
d
s
/d

a
y
),

 B
o
x
!

C
o
x
 s

c
a
le

)

y = 2.2+0.91*x (p=0.002)

 

 
All 1141 projects

282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

2

2.2

2.8

5

14

54

243

1238

7052

y = 1.2+5.1*x!9.2*x
2
 (p=0.004,0.00089)

AND (avg. normalized distance)R
O

U
 (

ra
te

 o
f 
u
s
a
g
e
 (

d
o
w

n
lo

a
d
s
/d

a
y
),

 B
o
x
!

C
o
x
 s

c
a
le

)

y = 2.8+2.5*x!5.3*x
2
 (p=0.5,0.31)

 

 
All 1141 projects

282 most mature projects

!0.6 !0.4 !0.2 0 0.2 0.4

2

2.2

2.8

5

14

54

243

1238

7052

y = 1.8+0.98*x (p=0.0045)

DOC (degree of coupling)R
O

U
 (

ra
te

 o
f 
u
s
a
g
e
 (

d
o
w

n
lo

a
d
s
/d

a
y
),

 B
o
x
!

C
o
x
 s

c
a
le

)

y = 3.1+1.3*x (p=0.0036)

 

 
All 1141 projects

282 most mature projects

3.2 10 32 100

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.80+0.16*x!0.040*x
2
 (p=0.00017,0.32)

ACP (avg. classes/package, log scale)

A
M

C
 (

a
v
g
. 
m

e
th

o
d
s
/c

la
s
s
, 
lo

g
 s

c
a
le

)

y = 1.1!0.46*x+0.28*x
2
 (p=0.0053,0.015)

 

 
All 1141 projects

282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.94!0.12*x (p=0.011)

AND (avg. normalized distance)

A
M

C
 (

a
v
g
. 
m

e
th

o
d
s
/c

la
s
s
, 
lo

g
 s

c
a
le

)

y = 0.92!0.028*x (p=0.81)

 

 
All 1141 projects

282 most mature projects

!0.6 !0.4 !0.2 0 0.2 0.4

1.1

1.8

2.8

4.6

7.4

12

19

31

50

y = 0.91+0.15*x (p=1e!5)

DOC (degree of coupling)

A
M

C
 (

a
v
g
. 
m

e
th

o
d
s
/c

la
s
s
, 
lo

g
 s

c
a
le

)

y = 0.92+0.33*x (p=3.6e!7)

 

 
All 1141 projects

282 most mature projects

3.2 10 32 100

1

1.2

1.5

1.8

2.2

2.8

3.8

5.7

18

y = 0.42+0.00023*x+0.00013*x
2
 (p=0.41,0.88)

ACP (avg. classes/package, log scale)

A
C

D
 (

a
v
g
. 
c
o
m

p
le

x
it
y
 d

e
n
s
it
y
, 
B

o
x
!

C
o
x
 s

c
a
le

)

y = 0.42!0.0097*x+0.0055*x
2
 (p=0.021,0.016)

 

 
All 1141 projects

282 most mature projects

0 0.1 0.2 0.3 0.4 0.5 0.6

1

1.2

1.5

1.8

2.2

2.8

3.8

5.7

18

y = 0.42!0.016*x+0.023*x
2
 (p=1.2e!7,3.4e!5)

AND (avg. normalized distance)

A
C

D
 (

a
v
g
. 
c
o
m

p
le

x
it
y
 d

e
n
s
it
y
, 
B

o
x
!

C
o
x
 s

c
a
le

)

y = 0.42!0.018*x+0.022*x
2
 (p=0.0096,0.13)

 

 
All 1141 projects

282 most mature projects

!0.6 !0.4 !0.2 0 0.2 0.4

1

1.2

1.5

1.8

2.2

2.8

3.8

5.7

18

y = 0.42!0.00037*x!0.0041*x
2
 (p=0.4,0.18)

DOC (degree of coupling)

A
C

D
 (

a
v
g
. 
c
o
m

p
le

x
it
y
 d

e
n
s
it
y
, 
B

o
x
!

C
o
x
 s

c
a
le

)

y = 0.42+0.000017*x!0.0010*x
2
 (p=0.97,0.82)

 

 
All 1141 projects

282 most mature projects

Figure 5: Analysis of relationships between product and architecture metrics (When two p-values are given
the first applies to the x coefficient and the second applies to the x2 coefficient)

Turning attention to ROU, we observe that the most down-
loaded projects among the mature ones have a tendency to
have high ACP. The effect of AND on ROU matches its ef-
fect on ODR: For average AND there are significantly more
downloads than when AND is low or high (the maxima oc-
cur at at 0.27 for all, 0.24 for mature projects). The DOC-
ROU graph indicates that projects with low coupling tend to
have fewer downloads. For the ACP and DOC relationships
one might have expected the opposite effect, i.e. that fewer
classes per package and low coupling might be beneficial.

In addition to the models shown in Figure 5, we have con-
structed multiple regression models using step-wise regres-
sion (see, e.g., [14]). The analysis showed that all architec-
ture metrics are significant components of the models for
ODR and ROU. Even though the p-values for these mod-
els show high significance since we analyze many projects,
the R2-values are not very impressive since there is a large
amount of spread in our data. We discuss these results in [9].

3.1 Limitations
We here briefly discuss important limitations and threats to
our study. These include

• The projects that we surveyed are all open source pro-
jects. Furthermore, it has been observed that many
SourceForge projects are not active [2, 10]. In our anal-
ysis, we use projects where there is activity in terms
of download. Even if a project has no activity it may
still have a software architecture that is of interest to
investigate

• Our analysis is automated. This means that we did
not check, e.g., if the downloaded source code could

compile. The large set of projects is meant to counter
the effects of this

• We have analyzed a limited number of metrics (few
architecture metrics appear available). Further, there
is a current interest in software architecture research
in non-product aspects of software architecture design,
e.g., in design decisions [12] and organizations [6], some-
thing which our analysis does not regard

4. CONCLUSIONS
We classified metrics of (Java) software projects into archi-
tecture metrics, which try to measure the high-level design
of software, and product metrics, which try to measure soft-
ware implementation and the resulting quality. Five metrics
were computed for a large body of open source Java projects,
and subsequently analyzed statistically. To our knowledge
this is the first study of this type.

The analyzed projects consist of 1,141 open source software
projects selected from the SourceForge repository. Criteria
for inclusion in the study included that the projects were
pure Java projects and not brand new, used SourceForge to
keep track of bugs, had at least 2000 source lines of code, had
at least two developers, had been downloaded at least twice
daily on average, and had reached development status beta.
An addition we selected a subset of 282 “mature” projects,
which had at least four developers, had been downloaded at
least seven times daily, and had reached development status
stable.

For both sets of projects (i.e., all 1,141, and the 282 ma-
ture ones) we constructed regression models for all pairs of
product-architecture metrics. In all cases statistically sig-
nificant relationships were discovered. The relationships are



in general stronger for the mature set of projects. For this
set and the ODR metric, all three architecture metrics give
rise to convex parabolic relationships, meaning that when
these metrics give medium values, less error prone software
results than when the metric values are extreme, whether
low or high. ODR as predicted by the models ranges from a
minimum of around 0.2 to a maximum of around 0.4. The
relationship is similar for both ACP and AND in the larger
project set.

In general, the effect of the architecture metrics on the prod-
uct quality metrics agrees with what has been proposed in
the literature. The most notable exception is AND. It was
formulated as ideally being 0, but our results indicate that
it is better to strive for a “compromise” on average when
designing architecture, e.g., a value around 0.3. A similar
tentative conclusion can be reached for ACP: to produce
quality software one should aim for about ten classes per
package on average. The effect of DOC on quality is more
inconclusive.

In summary, we have presented evidence of an effect of ar-
chitecture quality on product quality in a set of 1,141 open
source Java projects. Further research is needed to be able
to make predictions on a per-project basis, but the effect we
have found is quite significant statistically, and may be re-
lied on to draw conclusions about expected software quality
given a set of projects.

References
[1] L. Bass, P. Clements, and R. Kazman. Software archi-

tecture in practice. Addison-Wesley Professional, 2nd
edition, 2003.

[2] K. Beecher, C. Boldyreff, A. Capiluppi, and S. Rank.
Evolutionary success of open source software: an in-
vestigation into exogenous drivers. In Proceedings of
the Third International ERCIM Symposium on Soft-
ware Evolution (Software Evolution 2007), pages 124–
136, 2007.

[3] D. Beyer, A. Noack, and C. Lewerentz. Efficient rela-
tional calculation for software analysis. IEEE Transac-
tions on Software Engineering, 31(2):137–149, 2005.

[4] G. Box and D. Cox. An analysis of transforma-
tions. Journal of the Royal Statistical Society. Series
B, 26:211–252, 1964.

[5] S. Chidamber and C. Kemerer. A metrics suite for ob-
ject oriented design. IEEE Transactions on Software
Engineering, 20(6):476–493, Jun 1994.

[6] P. Clements, R. Kazman, M. Klein, D. Devesh,
S. Reddy, and P. Verma. The duties, skills, and knowl-
edge of software architects. In Proceedings of The Sixth
Working International IEEE/IFIP Conference on Soft-
ware Architecture (WICSA 2007), pages 20–23, Jan.
2007.

[7] G. Concas, M. Marchesi, S. Pinna, and N. Serra. Power-
laws in a large object-oriented software system. IEEE
Transactions on Software Engineering, 33(10):687–708,
2007.

[8] D. A. Garvin. What does ”product quality” really
mean? Sloan Management Review, 26(1):25–43, 1984.

[9] K. M. Hansen, K. Jónasson, and H. Neukirchen. An
empirical study of open source software architectures’
effect on product quality. Technical Report VHI-01-
2009, Engineering Research Institute, University of
Iceland, July 2009. http://www.hi.is/~kmh/doc/
vhi-01-2009.pdf.

[10] I. Herraiz, J. M. González-Barahona, and G. Rob-
les. Determinism and evolution. In A. E. Hassan,
M. Lanza, and M. W. Godfrey, editors, Fifth Inter-
national Workshop on Mining Software Repositories,
MSR 2008 (ICSE Workshop), Leipzig, Germany, May
10-11, 2008, Proceedings, pages 1–10. ACM, 2008.

[11] IEEE. IEEE Standard Glossary of Software Engineer-
ing Terminology, 1990. IEEE Std 610.12-1990.

[12] A. Jansen and J. Bosch. Software architecture as a
set of architectural design decisions. In Proceedings of
the 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA 2005), pages 109–120, 2005.

[13] S. Kan. Metrics and models in software quality engi-
neering. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 2002.

[14] B. W. Lindgren. Statistcal Theory. McMillan, New
York, 3 edition, 1976.

[15] R. C. Martin. Design principles and design patterns,
2000. http://www.objectmentor.com/resources/
articles/Principles_and_Patterns.pdf. Accessed
20 July 2009.

[16] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Soft-
ware Architecture: Foundations, Theory, and Practice.
Wiley, 2009.

[17] K. Wong. Rigi User’s Manual. Department
of Computer Science, University of Victoria, July
1996. http://www.rigi.cs.uvic.ca/downloads/
rigi/doc/user.html.

http://www.hi.is/~kmh/doc/vhi-01-2009.pdf
http://www.hi.is/~kmh/doc/vhi-01-2009.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html
http://www.rigi.cs.uvic.ca/downloads/rigi/doc/user.html

	Introduction
	Materials and Methods
	Choice of Metrics
	Architecture Metrics
	Product Metrics

	Data Gathering and Metrics Calculation

	Results
	Limitations

	Conclusions

