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Abstract—At the Large Hadron Collider (LHC) High
Energy Physics (HEP) experiment at CERN, 15 PB of raw
data is recorded per year. As it was considered inconvenient
to store, access and process this data using the traditional
hardware and software tools, this data gets reduced to
10-200 TB per year. This paper investigates the applicability
of the MapReduce paradigm for analyzing HEP data. In a
case study, a sample HEP analysis that makes use of the
HEP analysis framework ROOT has been re-implemented
using the MapReduce implementation Apache Hadoop. In
addition, a Hadoop input format has been developed that
takes storage locality of the ROOT file format into account.
This approach was evaluated in a cloud computing environ-
ment and compared to data analysis with the Parallel ROOT
Facility (PROOF).
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PROOF, High Energy Physics, Cloud computing

I. INTRODUCTION

High Energy Physics (HEP) experiments generate huge
amounts of data that need to be analyzed. For example, the
events measured at the Large Hadron Collider (LHC) ex-
periment at Conseil Européen pour la Recherche Nucléaire
(CERN) create 15 PB of raw data annually from which the
events to be analyzed get reconstructed [1]. In practice, a
physicist works on event data that is further reduced to
about 10-200 TB per year [2]. Physicists complain that
even with this reduced data, HEP analysis tools take long
to analyze the data or that it would be desirable to work
on the non-reduced datasets.

The MapReduce [3] paradigm promises a speed-up of
processing big data provided that processing can take place
locally where the data is stored in a distributed file system
that is spanning the nodes of a cluster. HEP analyses can
be typically parallelized on the event-level and are thus
local with respect to event-data. Therefore, it is worthwhile
to investigate the applicability of MapReduce. To this aim,
a sample HEP analysis that makes use of the ROOT HEP
analysis framework [4] has been rewritten to be usable
within the context of the MapReduce implementation
Apache Hadoop [5]. ROOT uses its own file format for
storing event data. To be able to move processing to
the nodes where event data is stored, Hadoop needs to
know where particular data of a current event is stored.
To provide this information, a so called input format has
been developed for the ROOT file format. To evaluate the
correctness and the performance and scalability of our
approach and implementation, we apply it with varying

cluster sizes and compare it with a distributed implemen-
tation based on PROOF [2], the Parallel ROOT Facility.
We use cloud computing to provide the cluster resources.

This paper is structured as follows: subsequent to this
introduction, we provide foundations. Afterwards, in Sec-
tion III, we describe the sample HEP analysis that we
use in our MapReduce-based approach. In Section IV,
we present our ROOT-specific input format for Hadoop
and the MapReduce implementation of the sample HEP
analysis. Results from running our implementation in a
cloud-based cluster are given in Section V and subse-
quently discussed in Section VI. Related work is surveyed
in Section VII, before we conclude with a summary and
an outlook in Section VIIL

II. FOUNDATIONS

In this section, we provide an overview on HEP analy-
sis, on the Worldwide LHC Computing Grid (WLCG), on
the ROOT framework, and on the Parallel ROOT Facility
(PROOF) and the Structured Cluster Architecture for Low
Latency Access (SCALLA) filesystem. Furthermore, we
introduce MapReduce and the Apache Hadoop implemen-
tation together with the Hadoop File System (HDFS).
Finally, we cover the principles of cloud computing.

A. High Energy Physics Data Analysis

In High Energy Physics (HEP) experiments, such as the
Large Hadron Collider (LHC) [6] at CERN, the collisions
of particles are observed using detectors. Each of the LHC
experiments (the four big experiments are ATLAS, CMS,
ALICE, and LHCD) uses a detector that fits the purpose
of the particular experiment. The raw data produced by a
detector is used to reconstruct data about events, such as
a single bunch crossing of two proton beams.

In, for example, the LHCb [7] experiment, the typical
amount of data per event is approximately 50 KB. With
2 x 100 events per year, the annual data volume amounts
to O(1) PB—the other LHC experiments produce even
more data. All events are independent from each other,
thus the analysis of the reconstructed data is embarrass-
ingly parallel. Basically, an analysis includes two steps:
first, the data set is scrutinized for events containing a
specific signature. In the second step, events with this
signature are analyzed in detail. The quantities of interest
are probabilities or probability density functions for a
certain HEP process or configuration to occur: numerical



estimates are obtained by means of histograms—simple
counters for how often a certain condition is observed [8].

B. The Worldwide LHC Computing Grid

In the case of the LHC experiments, the data is stored
and processed using a computing grid with a hierarchi-
cal architecture, the Worldwide LHC Computing Grid
(WLCG) [1]. The raw data produced at LHC is stored (and
preprocessed) at the Tier-O center at CERN. Distributed
copies are sent to Tier-1 centers around the globe. The
Tier-1 centers redistribute reduced data to Tier-2 centers.
Tier-2 centers are meant to provide capabilities for end-
user analysis and Monte Carlo simulations. The local
workstations and smaller clusters of a department can be
considered Tier-3 level. In our work, we focus on problems
that arise at Tier-2/Tier-3 level. Typically, batch processing
takes place within the WLCG.

C. ROOT, PROOF and SCALLA

ROOQOT [4] is a C++ framework and library developed
at CERN. It provides powerful functionality for analyzing
and visualizing data. ROOT defines its own data struc-
tures for storing data in main memory and in files. For
implementing HEP analyses, a physicist typically writes a
C++ program that uses ROOT functionality to access and
process data stored in ROOT file format.

The Parallel ROOT Facility (PROOF) [2] is used to run
analyses of ROOT files in parallel on computing clusters:
work is broken down by a master node into packets that
are processed in parallel by the worker nodes of a cluster.
A packet can be as small as the basic independent unit of
embarrassingly parallel processing: the HEP event.

While ROOT and PROOF are independent from a par-
ticular file system that is used to store the ROOT files, the
Structured Cluster Architecture for Low Latency Access
(SCALLA) file system [9] is often used together with
PROOF. SCALLA allows to store files in a distributed
manner: each node of a cluster stores different files of the
SCALLA filesystem on its local hard disk thus enabling
huge file systems that store huge amounts of data. On
one hand, the distribution is handled transparently, thus
a user does not need to know on which node a file is
physically stored. On the other hand, PROOF can exploit
the distribution information to assign a packet to that
worker node that has the relevant file locally available.
Only if that node is busy, another node gets the work
assigned which needs then to fetch the data from the busy
node via network access.

D. MapReduce, Hadoop and HDFS

MapReduce [3] is a general purpose paradigm for
parallel data processing in clusters of commodity PCs. It
is based on the assumption that a distributed filesystem is
deployed in a cluster and thus, the data to be processed
is stored in a distributed manner. In this setup, network
traffic can be minimized by moving the processing of data
to the nodes where the data to be processed is actually
stored—or, if the current node is already busy processing,
at least to a node that is close to the storage node in

terms of network distance. Processing takes place in two
consecutive steps, a map and a reduce step. The map step
works preferably on local data (to achieve a speed-up)
and produces intermediary results that are stored locally.
These intermediary results are locally partitioned into as
many partitions as reduce subtasks will be later executed.
The reduce step collects a partition of the intermediate
results remotely from all the worker nodes, condenses
the partition, and writes the reduced result as file to the
distributed filesystem. Since the map steps are independent
from each other, they can be executed embarrassingly
parallel on the nodes of the cluster. As soon as all map
subtasks finish, the intermediate results are stable and the
reduce subtasks are executed.

The map and reduce functions have to be user defined,
both take a key/value pair as input. The map function takes
as input a key/value pair generated from the input data
and emits one or more key/value pairs as intermediate
result. To achieve locality of processing, the key/value
pair used as input for the mapper needs to refer to a
split of the data that is locally available. To enable this,
MapReduce needs to be aware of the file format that
is processed and needs to know, which node from the
distributed filesystem stores the relevant chunk of data. To
support partitioning of the intermediate result as needed by
the reduce step, the MapReduce framework automatically
sorts the intermediate result based on the key. The reduce
function takes as input a key and a list of all the values for
that key from the intermediate result. This list of values is
typically reduced to a smaller list of values that is emitted
as value for the current key.

Apache Hadoop [5] is a popular open-source framework
that implements the MapReduce paradigm. Hadoop is im-
plemented in Java and thus, the map and reduce functions
are preferably implemented in Java.

MapReduce assumes a distributed filesystem. Hadoop
comes with the Hadoop File System (HDFS) that stores
data distributed over the nodes of a cluster. Just like
with SCALLA, the distribution is transparent to the end
user. In contrast to SCALLA, HDFS splits individual files
into blocks of equal size (typically 64 MB). This allows
huge files spanning multiple nodes. Furthermore, copies
of each block are stored on different nodes in the cluster
thus enabling fault-tolerance: if a node fails, a remaining
replica is automatically copied to another node to take care
that a pre-defined replication factor is adhered to. This
enables also loadbalancing of map subtasks as there exist
multiple nodes where the same data is locally available.

HDEFS can be used outside the context of MapReduce.
For example, it is possible to access HDFS files from
ROOT or PROOF via an HDFS plugin for ROOT.

E. Cloud Computing

Cloud computing is an approach that gives the ability
to scale an IT infrastructure up and down by only us-
ing and paying for just as many resources as currently
needed (“elastic” and “pay-per-use”) [10].



In the Infrastructure as a Service (1aaS) cloud comput-
ing service model [10], the computational resources are
typically provided by Virtual Machines (VMs). A popular
TaaS cloud provider is the Amazon Elastic Compute Cloud
(EC2) [11]. EC2 provides only VMs. Therefore, it used
together with further services of the Amazon Web Services
(AWS) family, for example for storage. Each EC2 VM in-
stance comes with an instance storage (Amazon states that
it is based on disks that are physically attached to the host
computer). However, instance storage is not persistent. In
contrast, the Elastic Block Store (EBS) provides persistent
block-based storage that itself is independent from a VM,
but can be attached to a VM so that it appears like a local
storage. EBS does not affect the network traffic of the
(virtualized) network of a VM.

An TaaS cloud is attractive because it is easy to install
and configure own software (such as Hadoop and HDFS):
in contrast to a traditional cluster, an laaS user is superuser
of each VM instance. Furthermore, it is possible to create
arbitrary cluster sizes (only limited by the number of
currently available VM instances). However, an external
cloud provider charges for usage.

III. SAMPLE HIGH ENERGY PHYSICS ANALYSIS

To investigate the applicability of MapReduce to HEP
data analysis, we use an example analysis that represents
many of the tasks conducted at WLCG Tier-2/Tier-3 fa-
cilities. The example ROOT-based C++ analysis has been
developed by researchers from the Max-Planck-Institut fiir
Kernphysik (MPIK) in Heidelberg. They also provided a
toy Monte Carlo event generation program that uses the
PYTHIA-8 [12] event generator. The output data of this
simulation contains the traces of the involved particles for
each event as they are recorded by a detector. These traces
are called tracks and contain additional information, such
as the charge and momentum of the traced particles.

The provided example HEP analysis processes the event
data and counts the appearance of a specific particle. This
particle is identified by its decay into two further particles:
a positively charged one and a negatively charged one. The
tracks of these two particles is used to determine the mass
of the specific particle of interest. Therefore, each pair of
tracks where one track belongs to a positively charged
particle and the other belongs to a negatively charged
particle is considered. For each of these pairs, the point
of closest approach is calculated. If this distance is small
enough, the point of closest approach is considered to be
the point where the particle of interest decayed into the
two further particles. The outcome of the analysis is a
histogram that depicts the reconstructed particle masses
in a certain range.

IV. USING HADOOP FOR HIGH ENERGY PHYSICS
ANALYSIS

Since the events are analyzed independently, we can
speed-up the analysis by processing them in parallel.
Each event is checked whether it contains particles with
certain characteristics (in the example analysis: a certain

mass), intermediate results for the matching particles are
produced and finally merged. This can be formulated in a
MapReduce manner: events are passed to map functions,
which perform the event-level analyses and produce new
key/value pairs (in the example analysis: representing the
mass of a matching particle), which are passed to reduce
functions that do the statistical analyses (in the example
analysis: producing histograms).

Since we process multiple input files and the events are
numbered inside the file scope, we provide this informa-
tion as input key/value pairs to the mapper as follows:
<path to event file , event number in file >.

The intermediate key/value pairs need to be defined
in a way that they represent the characteristics of in-
terest. In the example analysis, we search for parti-
cles with a certain mass. Therefore, the intermediate
key/value pairs are: <mass of the particle , number of the
observed particles with that mass>. These are fed into the
reduce phase, where a histogram is created using ROOT.

A. The Physical Structure of the ROOT Input Data

To distribute processing of data stored in a ROOT-based
file format using Hadoop, we need to consider its low-
level structure. ROOT uses a complex binary file format
to stream data objects to disk. Internally, a tree structure
where member variables of classes are split into different
branches is utilized. Variables inside the same branch
are written to fixed-size buffers, which are compressed
and written to disk when their capacity is reached. Since
member variables can be of complex compound types
themselves, subbranches with associated output buffers
can be created. The depth, to which subbranches are
created can be controlled when a branch is initialized.

Fig. 1 shows the distribution of events in two ROOT
files. Each file contains 2 x 10* events and has a total
size of about 50 MB. We define the byte position as the
offset of a byte from the beginning of the file. Using
the byte position, we calculate metrics for the minimum,
maximum, median, and average of the byte positions of
all bytes belonging to each respective single event.

The file in Fig. 1a is created with a maximum number
of subbranches, the file in Fig. 1b with no subbranches.
The most important observations are:

o The higher the event number, the later in the file the
per-event data is stored.

« Even if the data belonging to one event is not stored
continuously inside a file, the event-associated data
is clustered around certain byte positions.

We use these observations to define how the processing
of input data is distributed by the Hadoop framework.

B. Hadoop Input Format

In Hadoop, the part of data that is processed by a single
mapper is defined as an input split. Input splits are created
by subclasses of the Hadoop class InputFormat. It
is responsible for cutting the physical data at logical
boundaries. For example, an input format for text files
splits at line-breaks. Depending on the duration of a map
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Figure 1.

subtask, an input split should either match an HDFS block
or partition an HDFS block into multiple input splits.
Due to the big HDFS block size, an input split contains
typically data that is turned into several key/value pairs as
map input (such as multiple lines of text with each line
giving one key/value pair).

Typically, the input data for a ROOT analysis consists
of several files. Therefore, splitting the input data on a
file-level and representing each file by a single input split
is possible, but has considerable drawbacks:

1) We have no control over the granularity of the sub-
tasks assigned to each mapper. If we work with big
input files (files involved in a single HEP analysis
can be O(1) TB each), the subtasks assigned to the
mappers take a long time to complete. This results
in situations where analysis completion is delayed
by a single, huge map subtask.

2) If the number of input files is smaller than the total
number of worker nodes, some of the nodes do
not get any subtasks assigned, which results in idle
nodes and unnecessary low parallelity of processing.

3) Hadoop prefers to schedule subtasks to worker
nodes where the corresponding input data is stored
locally. This means that input splits should refer to
data that is stored on a single node. If the input
file size and the corresponding input split are larger
than the block size in HDFS, then local storage is
not exploited anymore.

Therefore, we need to define how a ROOT file is divided
into several input splits that are efficiently processed by a
Hadoop system. Due to the physical structure of the ROOT
files, there is a good chance that all the data or at least most
of the data belonging to a single event is stored on a single
block in HDFS. Thus, we calculate the distribution metrics
(minimum, maximum, average, or median byte position of
the per-event data) for each event and assign the events
to a certain block in HDFS based on the value of the
chosen metric. The events assigned to a single block in
HDEFS then define the input splits that are determined by
our ROOT-specific InputFormat class.
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Per-event data distribution in an example file with 2 x 10% events.

C. Implementation of Input Format and Analyses

Input formats are implemented by inheriting from the
Hadoop Java class InputFormat. To provide suitable
input splits, our ROOT-specific input format needs the
byte positions of events. To this aim, we implemented a
standalone C++ tool that uses ROOT to traverse the input
files and to generate all the metrics described at the end
of Section IV-B. These metrics are stored by the tool in
helper files which we call event maps. The tool needs to
be executed once the ROOT input files are available or
whenever they change. If a Hadoop run is started, the event
map files are read by our input format implementation and
thus the input splits can be determined accordingly. From
the available metrics, we use the average byte position to
determine the HDFS block targeted by the input split.

The original analysis is a C++ program that links to
the ROOT library to use its functionality. To be able to
reuse parts of the original C++ code, we utilize Hadoop
Streaming which provides the possibility to implement
map and reduce functions in other languages than Java.
Thereby, the key/value pairs are read line-by-line from
standard input. The per-event data analysis and calculation
of the particle mass is implemented in the map function,
while the reduce function collects the mass values from
the different mappers and creates the final histogram.

To compare our implementation with a PROOF-based
analysis, we implemented the same analysis for PROOF.
In PROQF, parallelizing a ROOT analysis that reads data
from ROQT files is done with the Selector framework. A
C++ code skeleton is automatically generated and the data
stored in specified tree-branches is automatically split for
parallel processing. The implementation then comes down
to calls of the original analysis code at the right place.

V. EVALUATION

In this section, we evaluate our solutions. We describe
the clusters that we deployed using Amazon’s EC2 and
outline the generation of the data used for the evaluation.
Finally, we evaluate our input format and compare the
Hadoop-based analysis with the PROOF-based analysis.



Table I

HARDWARE CONFIGURATION OF CLUSTER NODES.
Instance type: ml.medium
CPU: 2 EC2 Compute Units (ECUs)
Architecture: 64-Bit
Boot volume: EBS
Memory: 3.75 GB RAM
EBS-storage: 100 GB

A. Deployment

We evaluated the performance of EC2 instance storage
and EBS by measuring the execution time of the original
analysis on a small dataset and were not able to detect
a significant speed difference. Hence, we decided to use
EBS, since it provides data persistence in case the VMs
are stopped and restarted. The hardware configuration of
the cluster nodes is given in Table L.

For collecting cluster metrics, we used the Ganglia
monitoring system [13]. Hadoop and PROOF use both a
master/slave architecture: in our configuration, the master
daemons and the Ganglia meta-daemon are deployed on
dedicated VMs. The deployed software is listed in Table II.
The maximum number of subtasks running on a node in
parallel was set to 2 for Hadoop and PROOF. The HDFS
replication factor was set to 3.

B. Data Generation

The data generation is a two-step procedure. In the first
step, Monte Carlo data is generated with help of the event
generator PYTHIA-8 [12]. In the second step, a detector
chain is simulated that reconstructs the particle tracks. The
output of the data generation is stored in a ROOT-based
file format, called Simple Data Format (SDF), which is
used by the researchers at MPIK.

For the evaluations, we created three different datasets:
a small one, a middle sized one, and a big dataset. The
small dataset is used for evaluating the input formats and
contains a series of differently sized files. It contains single
files of different size that are stored in HDFS: 7.5 x 105
events (1.8 GB), 1.875 x 10° events (4.4 GB), 3.75 x 10°
events (8.8 GB), and 7.5x 105 events (18 GB) respectively.

The middle and big datasets contain files with fixed size
and are used for comparing the Hadoop-based analysis
with the PROOF-based analysis. The number of events
per file is 3 x 10°. Generating one file takes around 25
minutes on a ml.medium EC2 instance and the individual
output file size is 750 MB. Since the HDFS block size is
set to 64 MB throughout all our experiments, an individual
file occupies 12 HDFS blocks. Each generated file was
written as a separate ROOT file to HDFS and SCALLA.

The middle sized dataset contains 250 of such ROOT
files that accumulate to 75 x 10° events resulting in
190 GB of data. A cluster with 15 worker nodes took
about 8 hours to generate this data. The creation of the
event map files on a single EC2 instance took about 1 hour.

The big dataset contains 1500 ROOT files totaling
450 x 10% events occupying 1 TB. The data generation
with 120 worker nodes took about 7.5 hours. The event
map generation for this dataset was parallelized with the

Table II
SOFTWARE CONFIGURATION OF CLUSTER NODES.

Ubuntu: 12.04 with Linux kernel 3.2.0-27-virtual
SCALLA: 3.2.0

Hadoop: 1.0.4

ROOT/PROOF: 5.34/05

PYTHIA: 8.1

Ganglia: 352

same number of worker nodes using Hadoop Streaming
and took 750 seconds to complete.

C. Input Format Evaluation

For the input format evaluation, we compare two dif-
ferent custom input format implementation:

e StreamingInputFormat: This class generates
input splits with equal size, without taking any lo-
cality information into account.

e ROOTFileInputFormat: The input splits corre-
spond to blocks in HDFS and are generated according
to the approach described in Section I'V-B.

The cluster size was fixed to 15 worker nodes. Us-
ing the different sized files from the small dataset, the
StreamingInputFormat generates 30, 75, 150, and
300 input splits respectively leading to an average number
of maps assigned to each worker node of 2, 5, 10, and 20
respectively. We repeated the evaluations two times for
each input size to be able to calculate a mean average.

Fig. 2a shows the network throughput during the
analysis of the input file with 7.5 x 10° events: The
RootFileInputFormat causes considerably less net-
work traffic in comparison to the StreamingInput-—
Format. This demonstrates that our approach success-
fully assigns the map subtasks to that nodes that are
responsible for storing the corresponding event data.

A closer investigation of the network utilization within
the overall Hadoop workflow reveals the following for
the RootFileInputFormat: during the initial setup,
reading in the event map files causes a high peak in the
network traffic. This is due to the fact that these files are
stored in HDFS and the Hadoop framework reads them
remotely to calculate the input splits. Furthermore, we ob-
serve for the RootFileInputFormat a small increase
in the network utilization towards the end of the analysis
when the results are combined by the reducer (starting
from 6800 seconds in Fig. 2a). The reason is that the
intermediate key/value pairs are read remotely. During the
actual HEP analysis (the map subtasks), most of the data is
read locally when using the RootFileInputFormat.

In contrast, the StreamingInputFormat leads to
a lot of remote reads to provide the map subtasks with
event data. During the reduce phase, no event data is
read anymore; only the intermediate key/value pairs are
transmitted via the network to the reducer.

Fig. 2b shows analyzed events per second for both input
formats: both show a similar performance and the overall
performance increases with the input size. This indicates
that Hadoop needs a minimum number of maps per worker
node to perform efficiently. While the result from Fig. 2a is
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that the RootFileInputFormat leads to less network
transmission than the StreamingInputFormat, it is
remarkable that the duration of the overall HEP analysis
is almost the same for both input formats. Regarding
our example HEP analysis, we conclude therefore that
its total performance is rather affected by the computing
capabilities than by the I/O performance which does not
measurably contribute to the duration.

D. Comparison of Hadoop and PROOF

We ran the Hadoop-based and PROOF data analyses
successfully on different cluster sizes and dataset sizes:
both implementations yield the same output values as the
original non-parallel ROOT analysis. For comparing the
performance of the Hadoop-based data analysis with the
analysis in the PROOF framework, we used the middle
and big datasets.

PROOF was used with two different file systems for
reading the input data: SCALLA and HDFS. Using the
middle-sized dataset, we started with a cluster size of 15
worker nodes and scaled-up to 30, 60 and 120 nodes.
The analysis of the generated events was done with both
Hadoop and PROOF and was repeated two times for
each cluster size to be able to calculate average means
of the monitored cluster metrics. After each scale-up of
the cluster size, the data stored in HDFS and SCALLA
was rebalanced such that each data node roughly stores
the same amount of data.

We used the big dataset to evaluate the performance of
a Hadoop cluster with 120, 240, and 480 worker nodes.
Additionally, we evaluated the performance of PROOF
reading the data from SCALLA on a 120 and 240 worker
node cluster (480 nodes were not possible for PROOF due
to limited funding of cloud resources; for the same reason,
we were not able to repeat the measurements for PROOF
with HDES). After each scaling of the cluster, the data
stored in HDFS and SCALLA was rebalanced.

Fig. 3a shows the analyzed events per second for the
three different analysis software and file system configura-
tions. The values for the smaller cluster sizes (15, 30, 60,
and 120 worker nodes) correspond to the analysis of the
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middle-sized dataset, while the values for the 240 node
cluster correspond to the big dataset. The number of the
analyzed events per second on a 120 node cluster is similar
for both datasets analyzed with that cluster size (Hadoop:
15396 vs. 14666 events per second, PROOF + SCALLA:
18844 vs. 18671 events per second). The result for the 480
worker node Hadoop cluster is omitted in the figure—it
is 50664 events per second and follows the same trend as
the results for the smaller cluster sizes.

Our results show that Hadoop introduces overhead to the
calculations. Comparing its performance to the PROOF-
based solutions, we identify a deceleration by 14%—-29%.
When using PROOF, the performance differences between
the two underlying file systems are negligible.

We observe that the number of analyzed events per
second almost doubles when we double the cluster size.
It can thus be said that all three solutions scale well on
the investigated cluster sizes. Nevertheless, when scaling
the Hadoop cluster size from 240 to 480 worker nodes,
the performance did not double, but the gain was only
about 70%. We can think of two reasons: First, the setup
phase does not benefit from parallelization; the generation
of the input splits in Hadoop is done by one of the master
daemons and cannot be parallelized within the framework.
Secondly, also the reduce step does in our HEP analysis
not benefit from parallelization as only one reduce subtask
is used. (However, the same applies for the final step in
the PROOF approach). Because these sequential parts of
the overall workflow do not experience any speedup, they
relatively gain weight in the total execution time when
scaling the cluster size. This could be an explanation of
the reduced performance gain when we scale the cluster
size from 240 to 480 nodes. Nevertheless, the achieved
performance gain is still satisfying.

Fig. 3b shows the average network throughput on a 120
worker node cluster during the analysis of the middle-
sized dataset with Hadoop/HDFS and with PROOF read-
ing data from SCALLA. Hadoop causes some network
traffic during the setup phase and at the end when the
intermediate data of the map subtasks is retrieved by the
reducer. During the analysis by the map subtasks, the data
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is mainly read locally. In contrast, PROOF with SCALLA
causes significantly more network traffic, since it is not
able to schedule all subtasks to the nodes that are in charge
of storing the data. Nevertheless, this is not reflected in
the total execution time. This reaffirms that our example
analysis rather depends on CPU power than on network
performance. Measurements for PROOF with HDFS are
not shown as this requires a complete different scale for
the plot: the network traffic was significantly larger than
for the two other configurations. The reason is that PROOF
with HDFS does not take any storage locality into account.

VI. DISCUSSION

The above evaluation shows that our Hadoop input
format for ROOT is able to significantly reduce network
load by allocating map subtasks to the nodes that are in
charge of storing the data to be analyzed. We are not aware
of any other MapReduce input format that achieves this
for ROOT files.

Furthermore, our evaluation shows that both, Hadoop
with our input format and PROOF, scale well when
increasing the cluster size. Finally, the evaluation shows
that our Hadoop-based implementation is slower than our
PROOF-based implementation of the HEP analysis even
though PROOF with the SCALLA filesystem uses just
a file-based notion of data locality. Our explanation is
threefold: first, the sample HEP analysis that we performed
is rather CPU-bound, not I/O-bound, and thus, speed-up
due reduced network load is negligible in comparison to
the duration of the actual HEP analysis. Second, Hadoop
is implemented in Java while PROOF is implemented in
C++ which is typically faster than Java, and in the case of
Hadoop, each subtask on a worker node is started in a new
Java Virtual Machine (JVM) which adds further overhead.
Third, the ROOT-based map and reduce subtasks that are
called by Hadoop are implemented in C++ and thus, we
used for the involved Java/C++ communication the stan-
dard input/output to pass key/value parameters in and out
line-by-line (Hadoop Streaming): this includes encoding
all values to ASCII and parsing them back which is slow.

Even though the Hadoop-based implementation is
slower than the special-purpose PROOF-based implemen-
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tation, using Hadoop/HDFS has two main advantages:
First, it has a bigger user- and developer-base. Thus, it
is more likely that bugs are fixed and new features are
added. Also, more documentation is available for Hadoop
and HDFS than for PROOF and SCALLA. Furthermore,
Hadoop and HDFS are installed at many sites and can
be used out-of-the box (for example, the Amazon cloud
provides a ready-to-use Hadoop service). For the same
reasons, it is more likely to find staff that is familiar with
Hadoop than with PROOF. Second, Hadoop and HDFS
are fault-tolerant. For example, in case of a failing node,
HDFS takes care that a configurable replication factor is
adhered to by automatically replicating data and Hadoop
automatically resubmits a failed map or reduce subtask.
In contrast are PROOF-based solutions or simple ROOT
batch jobs: with these, physicists suffer from analyses that
fail as a whole because of failing nodes or processes.

VII. RELATED WORK

Besides the evaluation of the applicability of MapRe-
duce to scientific computing in general, Ekanayake et
al. [14] describe also an adoption of Hadoop/HDFS for
HEP data analysis. However, they do not address the
problem of splitting the data efficiently using a ROOT-
specific input format. Instead, data files are processed as
a whole. This leads to the problems described in Sec-
tion IV-B. They evaluate their solutions on small clusters
(up to 12 compute nodes) and claim that for sizes larger
than 10 nodes, the speed-up diminishes. This contradicts
our results: using our ROOT-specific input format, we are
able to achieve satisfying speed-ups even when we scale
the cluster up to 480 compute nodes.

Riahi et al. [15] describe how Hadoop/HDFS can be uti-
lized for computing within the WLCG in a small/medium
Grid site (Tier-2/Tier-3). The problem of a ROOT-specific
input format is not solved. Instead, whole files are assigned
to single mappers. Similar to Ekanayake et al., they limit
their evaluation to very small cluster sizes (three compute
nodes with a total of 72 cores).

HDFS is not limited to Hadoop and can be used as
a reliable distributed file system without exploiting the
MapReduce paradigm. Bockelman [16] identifies HDFS



as a possible storage solution in the context of the CMS
experiment. He concludes that HDFS is a viable solution
for grid storage elements inside the WLCG, especially
with regards to scalability, reliability and manageability.
He is also the author of the HDFS plugin for ROOT.

VIII. SUMMARY AND OUTLOOK

We investigated the applicability of the MapReduce
paradigm for HEP data analysis that is based on the ROOT
analysis framework. To this aim, we used the general pur-
pose MapReduce implementation Apache Hadoop/HDFS.
For Hadoop, we developed a so called input format that
is aware of locality inside the ROOT file format and thus
enables Hadoop to assign map workload to the nodes that
are responsible for storing the data to be processed.

We evaluated our implementation for different cluster
sizes and compared it to traditional ROOT-based data
analysis that is parallelized using PROOF. To ease setting
up a cluster, we used cloud computing resources.

Our evaluation indicates that Hadoop offers a viable
alternative to the traditional methods: Both scale well and
while our Hadoop-based solution is slower, it has some
advantages: Hadoop is a wide-spread general purpose ap-
proach and adds fault tolerance for storage and processing.

For those that want to use PROOF for their analyses,
using HDFS to achieve fault tolerance at least with respect
to storage is a good choice. It is thus promising to develop
an HDFS plug-in for PROOF to make PROOF aware of
HDFS with respect to storage locality. To achieve this, the
approach from our ROOT input format is applicable.

Concerning performance improvements, it is worth-
while to investigate the performance of a pure C++
MapReduce framework implementation that avoids any
Java-related overheads or to use a different big data ap-
proach and framework beyond plain MapReduce. Another
speed-up might be achieved by using Graphics Processing
Units (GPUs) [17] instead of CPUs.

Last but not least, it needs to be investigated how other
HEP analyses than the one we used benefit from applying
MapReduce. This includes determining consumed I/O
time and CPU time and investigating their ratio.
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