
Fifth Workshop on Refactoring Tools 2012 (WRT ’12), June 1, 2012, Rapperswil, Switzerland.

An Approach and Tool for Synchronous Refactoring of UML
Diagrams and Models Using Model-to-Model Transformations

Hafsteinn Þór Einarsson Helmut Neukirchen
University of Iceland, Reykjavík, Iceland

hafsteinn.thor.einarsson@gmail.com helmut@hi.is

Abstract
When refactorings are applied to software models that are
specified using the Unified Modeling Language (UML), the
actual model and the graphical presentation of the model us-
ing a diagram need to be distinguished. While UML refactor-
ing tools exist, they typically perform transformations only
on the model level and are not able to transform the corre-
sponding diagram as well. Thus, the UML model and the
diagram representation of the model may get out of sync.
This paper presents an approach that can be used in UML
tools to refactor UML models together with their diagrams.
To this aim model-to-model transformations are applied to
the underlying model as well as to the related diagram. To
prove the applicability of this approach, a prototype plug-in
for the Eclipse-based Papyrus UML editor has been imple-
mented. The model transformation language Query/View/-
Transformation (QVT) is used to specify the transformation
of the UML model and the diagrams.

Categories and Subject Descriptors D.2.7 [SOFT-
WARE ENGINEERING]: Distribution, Maintenance and
Enhancement—Restructuring, reverse engineering, and
reengineering

Keywords Refactoring, UML, Diagrams, Models, QVT

1. Introduction
While refactoring [8] is mainly applied to improve the in-
ternal structure of source code, refactoring is also bene-
ficial to restructure other artifacts, for example, software
models represented using the Unified Modeling Language
(UML) [14, 15]. Model-Driven Engineering (MDE) focuses
on using high-level models instead of low-level implemen-
tation languages. When in the non-MDE approaches, refac-

[Copyright notice will appear here once ’preprint’ option is removed.]

torings are performed at the implementation language level,
they need to be applied at the model level in MDE ap-
proaches. Thus, refactoring tool support for UML models in
MDE is as worthwhile as for source code in programming.

When representing software models using UML, the ac-
tual model and the graphical presentation of a model in form
of a UML diagram need to be distinguished: the model
is completely independent from any visualisation and does
therefore not contain any diagram layout information. Dif-
ferent (or even the same) aspects or parts of a model may
be visualised by different diagrams and there may be model
elements that are not visualised by any of the diagrams, but
only contained in the model.

A couple of UML tools support refactorings on UML
models. However, these tools do typically modify only the
model level, not the existing diagrams that relate to the
model that is refactored. Thus, the model and the corre-
sponding diagrams may get out of sync. Furthermore, this
prevents refactoring of the layout of the diagrams which may
as well be an important target of refactoring.

This paper presents an approach to refactor diagrams
and models, thus enabling to keep models and diagrams
in sync and to refactor also graphical aspects of the di-
agrams. Model-to-Model (M2M) transformations are used
thus avoiding transformations that are implemented using a
low-level programming language. The feasibility of this ap-
proach is evaluated by implementing a prototype refactoring
plug-in for the Eclipse-based Papyrus UML editor which is
part of the open-source Eclipse Modeling Project [6].

This paper is structured as follows: subsequent to this
introduction, foundations are presented. After that, the ap-
proach underlying the presented work is described in Sec-
tion 3. Based on this, Section 4 provides an overview on the
implemented prototype and preliminary results of applying
it. Then, in Section 5, related work is discussed. Finally, a
summary and an outlook conclude this paper.

2. Foundations
In the following, we provide an overview on UML and the
Eclipse Modeling Project that is used for implementing our
UML refactoring approach.

This is a pre-print! To appear in the ACM Digital Library 1 2012/5/11

2.1 The MOF Family
The UML is a part of a bigger family of specifications
that have been published by the Object Management Group
(OMG). All these specifications are related via the Meta Ob-
ject Facility (MOF) [12]. The specifications that are relevant
for refactoring UML are mainly those about UML itself, Ob-
ject Constraint Language (OCL), interchange formats, and
model transformation. These are covered in the following.

2.1.1 The Unified Modeling Language UML
The Unified Modeling Language (UML) has been developed
to represent software models. UML provides a visualisation
of certain aspects of the model using different diagrams.

Ordinary programming languages are typically defined
using a Backus-Naur Form (BNF) for the syntax. Such a
programming language can then be used to write a program
that might get refactored. Comparably, the abstract syntax of
the Unified Modeling Language (UML) is defined in terms
of the MOF [14]. MOF serves as an infrastructure to describe
concepts (the metamodel) of the UML, for example allowed
model elements and relationships between them. However,
MOF does not convey any information about concrete syntax
such as layout of graphical elements, therefore the notation
of UML model elements and element relationships using
diagrams is not defined using MOF but using prose language
and graphical examples [15].

UML itself can be used to define an actual model (sub-
sequently called UML model or just model) and to represent
different views on a model using different diagrams (sub-
sequently called UML diagram or just diagram). Both, the
model and the diagram might be subject of refactoring: for
example, the elements of a UML model and their relations
might get restructured or just the graphical representation
may get rearranged.

2.1.2 The Object Constraint Language OCL
The Object Constraint Language (OCL) [17] is typically
used to specify application-specific constraints in UML
models or to specify queries on UML models. But OCL
expressions can also used in the QVT transformation lan-
guages (cf. Section 2.1.4). The abstract syntax of OCL is
defined in terms of a MOF-compliant metamodel, a concrete
textual syntax is defined using BNF.

2.1.3 Interchange Formats
OMG’s XML Metadata Interchange (XMI) [16] is an Ex-
tensible Markup Language (XML)-based format that is typ-
ically used to exchange UML models, but in fact XMI is
applicable to all models that have a MOF-compliant meta-
model such as OCL. Many UML tools use the XMI format
and therefore allow to exchange UML models. For example,
a code generator tool reads an XMI file containing a UML
model that has been created using a UML editor tool.

As the UML specifications [14, 15] define only the UML
model in terms of MOF, the XMI format does not contain

any layout information needed to display diagrams that visu-
alise the model contained in an XMI description. Therefore,
a UML editor tool that reads an XMI file can only import the
contained model, but not any diagrams that might have been
created as well. UML editors typically store the diagram-
related information in some proprietary format. To overcome
this, the UML Diagram Interchange (UMLDI) format [11]
has been developed by OMG. However, the UMLDI format
is in fact not supported by every tool.

Currently, UMLDI is in the process of being replaced by
a specification that will be called Diagram Definition (DD).
Both, UMLDI and DD use a MOF-based metamodel, this
means the diagrams themselves are also treated as some kind
of model and can thus be encoded in XMI format as well.

2.1.4 Model Transformation
As part of Model-Driven Engineering (MDE), model trans-
formation approaches have been developed, for example, to
generate source code from models. In addition to transform-
ing from one abstraction level to another, Model-to-Model
(M2M) transformations can be used to transform a model
while staying at the same abstraction level or metamodel.

The OMG has developed Query/View/Transforma-
tion (QVT) [13] as a standard for transforming any MOF-
compliant model into another MOF-compliant model. The
QVT specification introduces three M2M transformation
languages that are related to each other: The QVT Core
supports mainly pattern matching and is defined using min-
imal extensions to OCL and MOF itself. Correspondingly,
it has only an abstract syntax. QVT Relations is a more
user-friendly declarative language that can be translated into
QVT Core and has furthermore a concrete, textual syntax.
QVT Operational mappings is based on QVT Relations,
but provides a more procedural style and a concrete textual
syntax that looks familiar to imperative programmers.

In addition to the built-in constructs, QVT allows to im-
plement functions as a black-box. This allows calling func-
tions that are implemented outside the scope of QVT, for
example using an implementation language such as Java.

2.2 Eclipse Modeling Project
The Eclipse Modeling Project [6] is part of the open-source
Eclipse platform. Those sub-projects or frameworks that are
most relevant for implementing UML refactoring are pre-
sented in the following.

2.2.1 Eclipse Modeling Framework EMF
The Eclipse Modeling Framework (EMF) is the foundation
of all other sub-projects and frameworks considered in this
paper. It supports to use and manage models that have an
Ecore compliant metamodel and to load or save it in XMI
format. EMF’s Ecore closely resembles OMG’s Essential
MOF (EMOF), a subset of basic MOF features — the Com-
plete MOF (CMOF) can be built on top of EMOF.

This is a pre-print! To appear in the ACM Digital Library 2 2012/5/11

2.2.2 Graphical Modeling Project GMP
The Graphical Modeling Project (GMP) was formerly called
GMF because it combines EMF and GEF, the Graphical
Editing Framework. GEF allows to create any kind of graph-
ical editors. Being based on EMF and GEF, GMP supports
to create editors for models that have an Ecore metamodel.
The GMF Notation sub-project uses EMF as well to repre-
sent the diagram of a model as an Ecore model. To this aim,
principles of OMG’s UMLDI are applied.

2.2.3 Model Development Tools MDT
The Model Development Tools (MDT) provide EMF-based
implementations of some industry standard metamodels. In
addition, MDT contains tools, such as editors for working
with the metamodel implementations.

The UML2 sub-project contains an implementation of the
UML 2.x metamodel. An implementation of OCL can be
found in the Eclipse OCL sub-project.

The Papyrus sub-project provides an editor that, amongst
others, supports to edit UML. As it is UML2- and GMP-
based, both, the UML model and the UML diagram itself
are represented using EMF. The UML model is stored in
an XMI file having the extension “.uml” and the diagram
model is stored in an UMLDI-compatible XMI file having
the extension “.notation”. A third file having the extension
“.di” links together the model and the diagrams that refer to
that model (even that file is in XMI format). The diagram
model contains only the additional layout information that is
not contained in the UML model — it does not contain any
information that is already contained in the UML model: in-
stead of duplicating the name of, for example, an identifier
used in the UML model, the diagram model contains a ref-
erence into the UML model. When the diagram needs to be
displayed, the text of the identifier is retrieved from the UML
model. To enable this referencing, each model element gets
a Globally Unique Identifier (GUID) assigned.

2.2.4 Model to Model Transformation M2M
The Model to Model Transformation (M2M) project pro-
vides infrastructure for M2M transformations such as imple-
mentations of the OMG QVT language family. For example,
the QVTO (sometimes referred to as QVTo) sub-project im-
plements QVT Operational mappings.

3. Approach
Our approach of refactoring UML models and diagrams
in parallel is based on the assumption that not only the
UML model, but also the corresponding UML diagrams
are internally represented as MOF compliant models. Then,
not only the UML model but even the diagrams may be
transformed (=refactored) using M2M transformations. As
UMLDI (and the forthcoming DD) are based on MOF, our
observation is that many UML editors fulfill this assumption
by supporting the UMLDI format for diagrams.

Although refactoring of MOF-based models can be im-
plemented using low-level programming languages [5], us-
ing M2M languages has the advantage of being more high-
level for the domain of model transformation. Furthermore,
transformation engines are typically interpreters, thus hard-
coded refactoring implementation can be avoided and refac-
torings may even be added at run-time.

While a couple of M2M languages exist, even some that
are specific to describe refactoring transformations [18] and
thus even more high-level for the refactoring domain, we de-
cided to use QVT. The reason was mainly that QVT is the
official OMG M2M language and therefore broad tool sup-
port exists, often even built-in into UML tool suites. From
the QVT family, we chose in particular QVT Operational
mappings because it is suitable for refactoring implementers
that grew up with the imperative paradigm.

If XMI files for the UML model as well as for the diagram
are available, then the QVT transformations could be applied
by a standalone QVT engine outside of a UML editor. In
practise it is more reasonable to apply refactorings in a more
interactive style by integrating them into a UML editor.

4. Prototype Tool
To validate our approach, we created a prototype implemen-
tation as a plug-in for the Eclipse Papyrus editor and make
in addition use of the Eclipse QVTO project. As only stan-
dard technologies (MOF-based UML metamodel, UMLDI
diagram format, QVT transformations) are used, a compara-
ble implementation should be also possible for other UML
editors as long as they are based on these standard technolo-
gies. Note that in Papyrus, the diagram is called notation.

As we wanted also contribute to enlarging the catalog of
UML refactorings, we developed two new refactorings for
UML activity diagrams and activity-related model elements:
Merge actions that merges two action nodes into one (includ-
ing adjustment of involved edges) and the inverse refactoring
Divide actions. (Details about these refactorings including
mechanics can be found in the thesis of Einarsson [7].) A
before-after example for the Merge actions refactoring can
be found in figures 2 and 3.

4.1 Implementation
The implementation consists of just three plug-ins for Pa-
pyrus: 1) is.hi.umlrefactoring.ui: adds a refactoring menu to
the Papyrus user-interface and invokes the QVTO refac-
toring transformations when clicked on the menu en-
try, 2) is.hi.umlrefactoring.core.transformations: bundles
the files that contain the actual QVTO transformations,
3) is.hi.umlrefactoring.core.libraries: contains Java imple-
mentations of black-box functions that are called by the
QVTO transformations. The workflow between these plug-
ins is depicted in Figure 1: when the user selects a refactor-
ing in Papyrus, the invocation library starts with fetching the
*.uml file containing the UML model and the *.notation

This is a pre-print! To appear in the ACM Digital Library 3 2012/5/11

Figure 1. Workflow of refactoring transformations

file containing the diagram model. It then sends the models
to the QVTO transformation which might call black-box
functions if needed. After the transformation has been ex-
ecuted, the invocation library saves the output, overwriting
the original models (Papyrus will then re-read these).

The implemented Java code is just user interface and
glue code and some black-box code for QVT. The actual
transformation is contained in the QVTO code.

4.1.1 Transformations
The transformation needed for the Merge actions refactoring
is shown in Listing 1. The first line imports the QVT black-
box library that contains some helper functions that needed
to be implemented in Java. Lines 3–5 specify the metamod-
els involved in the transformation: UML for the UML model,
NOTATION for the diagram model, ECORE is needed be-
cause UML and NOTATION are based on EMOF/Ecore.
Line 7 defines the input and output metamodels of the trans-
formation. The configuration properties in lines 8–9 hold
values that are passed into the transformation by the caller
(the Java code called when clicking on the refactoring menu
entry): the properties toMerge1 and toMerge2 are strings
that contain the GUID of the diagram elements that were in
the editor selected for merging. Further properties (=global
variables) that are used later are declared starting from
Line 11. The entry point into the transformation is Line 18:
the first two lines refactor the diagram, then the model is
refactored. To this aim, Line 19 calls on every model ele-
ment of the diagram model that is of type Shape (=a node

1 import m2m. qvt . oml . Um l U t i l i t i e s ;
2
3 modeltype NOTATION uses ' h t tp : //www. e c l i p s e . org

/gmf/ runt ime /1 . 0 . 2 / no t a t i o n ' ;
4 modeltype UML uses ' h t tp : //www. e c l i p s e . org /uml2

/3 . 0 . 0 /UML ' ;
5 modeltype ECORE uses ' h t tp : //www. e c l i p s e . org /

emf /2002/ Ecore ' ;
6
7 t rans fo rmat ion MergeAct ions (i nout no t a t i o n :

NOTATION, i nout uml : UML) ;
8 con f i gu r a t i on property toMerge1 : St r ing ;
9 con f i gu r a t i on property toMerge2 : St r ing ;

10
11 property objToMerge1 : n o t a t i o n : : Shape = nu l l ;
12 property objToMerge2 : n o t a t i o n : : Shape = nu l l ;
13 property edgeToRemove : uml : : A c t i v i t yEdg e =

nu l l ;
14 property incomingEdgesToTransform : Set (

A c t i v i t yEdg e) = Set {} ;
15 property nodeToRemove : uml : : Ac t i v i t yNode =

nu l l ;
16 property ta rge tNode : uml : : Ac t i v i t yNode = nu l l ;
17
18 main () {
19 no t a t i o n . ob j ec t sOfType (Shape) −>

ge t S e l e c t e dOb j e c t s () ;
20 no t a t i o n . ob j ec t sOfType (Shape) −> map merge () ;
21 uml . ob j ec t sOfType (Ac t i v i t yEdg e) −> map

s e tTa r g e t () ;
22 uml . ob j ec t sOfType (Ac t i v i t yNode) −> map

changeName () ;
23 uml . ob j ec t sOfType (Ac t i v i t yEdg e) −> map

removeEdge () ;
24 uml . ob j ec t sOfType (Ac t i v i t yNode) −> map

removeNode () ;
25 }

Listing 1. The MergeActions.qvto transformation

in an activity diagram), the query (=function that does not
transform a model) getSelectedObjects.

This query checks (lines 28 and 32 of Listing 2) for each
object on which it is called whether its GUID matches
the GUID stored in configuration properties toMerge1
and toMerge2. If yes, the properties objToMerge1 and
objToMerge2 are set to the respective references of these
Shape objects (lines 29 and 33). This is needed, because
later, real reference of the objects have to be used, but for
the elements selected in the Papyrus editor, only GUID
strings can be passed into the QVTO code. The function
hasGlobalId that is called in lines 28 and 32 is a black-
box function implemented in Java. While QVT provides a
function _globalId() to obtain the GUID of an element, this
function is not available in Eclipse’s QVTO implementation.
Therefore, a black-box function was needed that accesses
the URI of an element using Java (Line 2 of Listing 3).

4.1.2 Diagram Transformation
The actual refactoring on the diagram level is performed by
applying in Line 20 of Listing 1 the merge() mapping (=a
function that transforms an input into an output) on every
model element of the diagram model that is of type Shape.

This is a pre-print! To appear in the ACM Digital Library 4 2012/5/11

26 query Shape : : g e t S e l e c t e dOb j e c t s () : Void
27 {
28 i f (s e l f . h a sG l o b a l I d (toMerge1)) then {
29 objToMerge1 := s e l f ;
30 } end i f ;
31
32 i f (s e l f . h a sG l o b a l I d (toMerge2)) then {
33 objToMerge2 := s e l f ;
34 } end i f ;
35 }

Listing 2. The getSelectedObjects() query

1 pub l i c s t a t i c boolean ha sG l o b a l I d (Object
shapeElement , S t r i n g f ragment) {

2 S t r i n g e lementFragment = ((EObject)
shapeElement) . eResource () . getURIFragment ((
EObject) shapeElement) ;

3 re tu rn e lementFragment . e qu a l s (f ragment) ;
4 }

Listing 3. The Java hasGlobalId() black-box operation

The QVTO code of the merge() mapping is provided in
Listing 4. The first line specifies that this mapping takes a
Shape from the notation model as input and output. The
next line (Line 37) guards that the transformation is only
applied to the first of the two selected activity nodes to be
merged (the other node and all connected edges are trans-
formed as well when applying this transformation to the first
node). In lines 39–41, local variables are declared that will
be used to reference the node that comes first in the con-
trol flow of the nodes to be merged and the one that is last
and the edge between these nodes, respectively. These lo-
cal variables are set in lines 43–57 by checking for each in-
coming edge (targetEdges in the notation metamodel) if it
comes from objToMerge2 (lines 43–49) or for each outgoing
edge (sourceEdges in the notation metamodel) if it targets
objToMerge2 (lines 51–57). If the two nodes are connected
(Line 59), the actual diagram transformation is performed
in lines 60–69 based on the refactoring mechanics: the first
node and the connecting edge between the two nodes are re-
moved and all edges that are connected to the first node will
get connected to the remaining second node that takes the
role of the resulting merged node.

In Line 60, the connecting edge that will be removed
from the diagram model is used to look up the correspond-
ing edge in the UML model (of type ActivityEdge in the uml
metamodel) and the reference to it is stored in the property
edgeToRemove that has been declared in Line 13 of List-
ing 1. (That edge needs to be removed by the later refactor-
ing on the UML model level, so we make use of the fact that
each diagram model element has a reference to the corre-
sponding element in the UML model and memorise it in a
global variable for later use by the UML model refactoring.)
The same is done for the first node (Line 61) that will be re-
moved as part of merging the two nodes and for the second
node (Line 62), the node that will “survive” the merger.

Until now, only variables have been set. The first part
of the actual diagram transformation is performed in lines

36 mapping inout no t a t i o n : : Shape : : merge ()
37 when { s e l f . h a sG l o b a l I d (toMerge1) }
38 {
39 var f i r s t N o d e : Shape = nu l l ;
40 var l a s tNode : Shape = nu l l ;
41 var connec t ingEdge : Edge = nu l l ;
42
43 s e l f . t a rge tEdges−>forEach (incoming) {
44 i f (incoming . s ou r c e = objToMerge2) then {
45 f i r s t N o d e := objToMerge2 ;
46 l a s tNode := objToMerge1 ;
47 connec t ingEdge := incoming ;
48 } end i f ;
49 } ;
50
51 s e l f . sourceEdges−>forEach (ou tgo ing) {
52 i f (ou tgo ing . t a r g e t = objToMerge2) then {
53 f i r s t N o d e := objToMerge1 ;
54 l a s tNode := objToMerge2 ;
55 connec t ingEdge := outgo ing ;
56 } end i f ;
57 } ;
58
59 i f ((not (f i r s t N o d e = nu l l)) and (not (

l a s tNode = nu l l)) and (not (
connec t ingEdge = nu l l))) then {

60 edgeToRemove := connec t ingEdge . e l ement .
oc lAsType (Ac t i v i t yEdg e) ;

61 nodeToRemove := f i r s tN o d e . e l ement . oc lAsType (
Ac t i v i t yNode) ;

62 ta rge tNode := la s tNode . e l ement . oc lAsType (
Ac t i v i t yNode) ;

63 f i r s t N o d e . oc lAsType (Shape) . t a rge tEdges−>
forEach (incomingEdge) {

64 incomingEdge . t a r g e t := la s tNode ;
65 incomingEdgesToTransform += incomingEdge .

e l ement . oc lAsType (Ac t i v i t yEdg e) ;
66 } ;
67
68 no t a t i o n . removeElement (connec t ingEdge) ;
69 no t a t i o n . removeElement (f i r s t N o d e) ;
70 } end i f ;
71 }

Listing 4. The diagram merge() mapping

63–65: Each edge that is an incoming edge of the first node
(Line 63) is attached to the second node, by setting the target
of the edge to the second node (Line 64). These edges are
also added to a property (Line 65) that is later-on used by
the UML model refactoring to apply the same change also
on the model level. Once these adjustments have been made,
the connecting edge and the first node can be removed from
the diagram (lines 68 and 69).

4.1.3 UML Model Transformation
Based on the references to the UML model elements that
have been determined and saved during the transformation of
the diagram model, the transformation of the UML model is
straightforward: for all edges (model element ActivityEdge,
Line 21 in Listing 1) it has to be checked whether it is an
edge that is contained in the determined set of edges that
need to be transformed (Line 73 of Listing 5). If yes, this
is an edge that was incoming to the first node and thus the

This is a pre-print! To appear in the ACM Digital Library 5 2012/5/11

72 mapping inout uml : : A c t i v i t yEdg e : : s e tTa r g e t ()
73 when { incomingEdgesToTransform−>i n c l u d e s (s e l f

) }
74 {
75 s e l f . t a r g e t := ta rge tNode ;
76 }
77
78 mapping inout uml : : Ac t i v i t yNode : : changeName ()
79 when { s e l f = targetNode }
80 {
81 s e l f . name := nodeToRemove . name + " − " + s e l f

. name ;
82 }
83
84 mapping inout uml : : A c t i v i t yEdg e : : removeEdge ()
85 when { s e l f = edgeToRemove }
86 {
87 uml . removeElement (s e l f) ;
88 }
89
90 mapping inout uml : : Ac t i v i t yNode : : removeNode ()
91 when { s e l f = nodeToRemove }
92 {
93 uml . removeElement (s e l f) ;
94 }

Listing 5. The UML model mappings

target of that edge has to be adjusted to the second node, the
target node (Line 75). In the next step (call for every Activi-
tyNode model element in Line 22 of Listing 1, implementa-
tion in lines 78–82 of Listing 5), the name of the second node
is set to the concatenation of the name of the first node and
the second node (including a separator between the names of
the two merged activities). Finally, for all ActivityEdge and
ActivityNode model elements, corresponding mappings are
called (lines 23–24 in Listing 1) that remove a model ele-
ments from the UML model when it is an element that has
been determined to be removed (lines 84–94 of Listing 5).

4.2 Application
The implemented refactorings can be used to refactor UML
models and diagrams in parallel. As the typical user works
on the diagram level, the refactorings are invoked by select-
ing the elements to be refactored in the Papyrus diagram ed-
itor window and selecting a refactoring menu entry.

Figure 2 shows an excerpt of a UML activity diagram.
The two nodes Prepare order and Fill order that shall be
merged are selected and the Merge actions refactoring entry
is selected in the refactoring menu that has been added to
the Papyrus context menu. Figure 3 shows the resulting
activity diagram after the Merge actions refactoring has been
applied: The two activity diagram action nodes have been
merged into one action containing the text Prepare order -
Fill order and the edges have been adjusted accordingly.

The XMI representations of the original and the refac-
tored UML model not shown, but the underlying UML
model has been refactored in parallel. The interested reader
is referred to thesis of Einarsson [7] to see the XMI repre-
sentation of UML model and diagram.

Figure 2. Selecting Merge actions refactoring on diagram

Figure 3. Activity diagram after applying Merge actions

4.3 Discussion
The prototype implementation demonstrates that parallel
refactoring of UML models and diagrams is feasible using
M2M transformations. Moreover, it has been shown that
general purpose transformation languages, such as QVT, are
applicable to implement refactorings. Even if the underlying
metamodels or QVT do not support a needed feature, this
can be easily added due to QVT’s black-box approach.

This is a pre-print! To appear in the ACM Digital Library 6 2012/5/11

The presented QVTO code looks quite close to an imper-
ative implementation language, but in contrast to a low-level
implementation language, where all pattern matching and
data structure handling needed to be explicitly coded, this
is here provided by QVT. As a result, the complete imple-
mentation for the two refactorings is quite short in terms of
Lines Of Code (LOC): 205 LOC of QVTO, 57 LOC of Java
for the black-box library and 284 LOC of Java for the user
interface and calling the refactorings.1 It can be expected
that implementing the refactoring transformation using Java
would require significantly more LOC. Furthermore, a Java
implementation would be specific to the data structures in-
ternally used to represent the model, thus the transformation
implementation would be tool specific.

Except for a few short black-box functions that are spe-
cific to the Eclipse Modeling Project, our transformations are
completely tool independent and thus applicable using any
tool that has QVT support. This allows to re-use the QVT
implementations of the refactoring transformation in differ-
ent tools. If the diagrams are stored in UMLDI format, then
not only the model refactorings but also the diagram refac-
torings can be exchanged between different UML tools.2

In our prototype implementation, the UML model refac-
toring is steered by the diagram refactoring because to iden-
tify the UML model elements to be transformed we rely
on the references to the UML model elements that are con-
tained in the diagram. Accordingly only those elements that
are found and transformed in the diagram model will also
be transformed in the underlying UML model. Because a
diagram is just a partial view on the model, it might be
the case that the UML model contains more elements than
the diagram. In this case, model elements do not get trans-
formed if they are not contained in the diagram. Further-
more, it might be the case that two different diagrams refer
to the same elements of the UML model: in this case, only
the diagram on which the refactoring has been invoked will
be transformed, any other diagrams remain untouched even
though the shared underlying UML model gets changed. As
the UML model does not contain any references to diagrams,
the UML model cannot be used to steer the diagram refactor-
ings. A solution that addresses these problems would apply
independent, but related transformations on the UML model
as well as on all diagram models. When refactoring tradi-
tional programming languages, a reference finder is used to
find all locations that need to be updated and to apply thus
changes consistently at all places where needed. When refac-
toring models using QVT, we expect that the pattern match-
ing mechanisms of QVT simply finds all the locations that
refer to a certain model element.

1 The source code is available from http://xp-dev.com/svn/UMLrfp/
2 Note that in practise due to different interpretation of the XMI specifica-
tion and different implementations of the UML metamodel, XMI exchange
may not work between tools.

Currently, we make no use of the Eclipse Language
Toolkit (LTK). LTK provides wizard dialog pages for en-
tering refactoring parameters, invoking refactoring precon-
dition checking, and previewing changes. However, as we
do not need to enter any additional refactoring parameters
(the name of the actions in the refactored activity nodes can
just be adjusted in the UML editor using ordinary interac-
tive editing) for the sample refactoring implementations, we
decided not to use LTK.

5. Related Work
Boger et al. [2] describe refactorings for UML state chart
and activity diagrams and implemented these in a refactoring
browser. As this is a plug-in for the commercial Poseidon
for UML tool which allows diagram editing and uses an
underlying UML model, it can be assumed that simultaneous
refactoring of model and diagram is performed. However,
they do not explicitly discuss this aspect and thus nothing
about the implementation is known.

None of the other major commercial UML tools supports
refactoring that goes beyond simple refactorings such as
renaming elements. These do not even require to change
the internal diagram representation: Consider, for example,
renaming a model element. Just as described for Papyrus in
Section 2.2.3, the internal diagram representation does only
contain the graphical position of a model element, but not
the text to be displayed. Instead, a reference to the model
element is stored and that reference is used to obtain the
text to be displayed. Therefore, simple refactorings do not
require to keep transform model and diagram in parallel.

All further tools that support UML model refactoring are
from academia: Most of the refactoring tools are not inte-
grated into a UML editor, but standalone. These are then re-
stricted to transform just the models, but not diagrams. This
is probably due to the fact that the diagram file formats used
by graphical UML editors are often proprietary and thus only
the model can be accessed since only these are stored in the
XMI format. An overview on older academic UML refactor-
ing tool approaches is given by Dobrzański [4].

More recently, a couple of EMF-based refactoring ap-
proaches have been developed that are typically not specific
to UML but applicable to everything that has an EMF-based
metamodel. For example, the EMF Refactor project [5] is
a sub-project of the Eclipse Modeling Project that provides
extensible tool support for generating and applying refactor-
ings. For specifying the model transformations, not QVT,
but either low-level Java implementation or the transforma-
tion language Henshin [1] are suggested. This project pro-
vides however only generic infrastructure (for example an
LTK-based preview of model changes using a tree-view of
the EMF model) and no concrete refactorings, such as UML
refactorings. Another example is Refactory [18] that pro-
vides generic refactorings that can then be mapped to var-
ious different EMF-based metamodels and are thus indepen-

This is a pre-print! To appear in the ACM Digital Library 7 2012/5/11

dent from the language to be refactored. A custom transfor-
mation language that is specific to the refactoring domain
has been developed and is used. Although some of these
generic refactorings are applicable to UML models, the con-
crete syntax in form of UML diagrams are not considered.

Markovic and Baar [9, 10] refactor UML and OCL ex-
pressions that refer to the UML model in parallel. Just like
the approach presented in this paper, they use QVT for the
transformations. However, they do not consider diagrams —
only the model. But keeping UML model and OCL expres-
sions in sync during refactoring is comparable to keeping
UML model and diagram in sync as in our approach.

Diskin and Czarnecki [3] provide an algebraic framework
of synchronising transformations of different models having
a related metamodel. Like in our prototype implementation,
they map changes applied to one model on changes applica-
ble to another model, thus keeping both in sync.

6. Summary and Outlook
In this paper, we have presented an approach and a proto-
type implementation for synchronous refactoring of a UML
diagram and the underlying UML model using Model-to-
Model (M2M) transformations. In other known approaches
that use M2M transformations to perform UML refactor-
ings, only the underlying UML model is subject to trans-
formation, thus diagram and model may get out of sync.
Storing the model and the diagram using a MOF compliant
metamodel enables the usage of the model transformation
language QVT for applying the refactoring transformations.
Using a transformation language such as QVT has the ad-
vantage that refactoring implementations are much shorter in
comparison to using a low-level implementation language.

Our prototype tool was implemented as a plug-in for the
Eclipse Papyrus UML editor. However, our QVT refactoring
transformations are tool-independent and can thus be used
without modification with any tool that uses the XMI format
for the UML model and the UMLDI format for diagrams.

Future work targets at two directions: On the implemen-
tation level, it is worthwhile to include Eclipse LTK for inte-
grating the steps of refactoring precondition checking, refac-
toring parameter input, and (provided by the EMF Refactor
project [5]) preview of model changes. On the conceptual
level, the goal is to rewrite the QVT transformations as de-
scribed in Section 4.3 with the aim of letting them indepen-
dently from each other —but still in sync— apply compara-
ble transformations on the model as well as on all diagrams.

While developing our QVT transformations, we realised
that refactoring support for QVT code would be handy. This
is currently completely lacking and worthwhile to work on.

A topic that was out of scope of our work is synchronous
refactoring of implementation language source code, such
as Java code, and related UML models. The problem is here
that programming languages typically have no metamodel,
thus M2M transformations are not applicable.

References
[1] T. Arendt, E. Bierman, S. Jurack, C. Krause, and G. Taentzer.

Henshin: Advanced concepts and tools for in-place EMF
model transformations. In MoDELS’10: Proc. 13th interna-
tional conference on Model Driven Engineering Languages
and Systems, Part I, volume 6394 of LNCS. Springer, 2010.

[2] M. Boger, T. Sturm, and P. Fragemann. Refactoring Browser
for UML. In Revised Papers from the International Confer-
ence NetObjectDays on Objects, Components, Architectures,
Services, and Applications for a Networked World, volume
2591 of LNCS. Springer, 2003.

[3] Z. Diskin, Y. Xiong, and K. Czarnecki. From State- to Delta-
Based Bidirectional Model Transformations: the Asymmetric
Case. Journal of Object Technology, 10:6:1–25, 2011.

[4] Ł. Dobrzański. UML Model Refactoring-Support for Mainte-
nance of Executable UML Models. Master’s thesis, Blekinge
Institute of Technology, School of Engineering, Ronneby,
Sweden, 2005.

[5] Eclipse Foundation. EMF Refactor Project. http://www.

eclipse.org/modeling/emft/refactor/, 2012.

[6] Eclipse Foundation. Eclipse Modeling Project. http://www.
eclipse.org/modeling/, 2012.

[7] H. Þ. Einarsson. Refactoring UML Diagrams and Mod-
els with Model-to-Model Transformations. Master’s thesis,
Faculty of Industrial Engineering, Mechinal Engineering and
Computer Science, University of Iceland, Reykjavík, Iceland,
2011. URL http://hdl.handle.net/1946/8624.

[8] M. Fowler. Refactoring – Improving the Design of Existing
Code. Addison-Wesley, Boston, 1999.

[9] S. Markovic and T. Baar. Synchronizing Refactored UML
Class Diagrams and OCL Constraints. In 1st Workshop on
Refactoring Tools (WRT 2007), Berlin, Proceedings, 2007.

[10] S. Markovic and T. Baar. Refactoring OCL annotated UML
class diagrams. Software and System Modeling, 7(1):25–47,
2008.

[11] OMG. UML Diagram Interchange Version 1.0.0
(formal/2006-04-04), 2006.

[12] OMG. Meta Object Facility (MOF) Core Specification Ver-
sion 2.4.1 (formal/2011-08-07), 2011.

[13] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transfor-
mation Specification Version 1.1 (formal/2011-01-01), 2011.

[14] OMG. Unified Modeling Language (OMG UML) Infrastruc-
ture Version 2.4.1 (formal/2011-08-05), 2011.

[15] OMG. Unified Modeling Language (OMG UML) Superstruc-
ture Version 2.4.1 (formal/2011-08-06), 2011.

[16] OMG. MOF 2 XMI Mapping Specification Version 2.4.1
(formal/2011-08-09), 2011.

[17] OMG. Object Constraint Language (OCL) Version 2.3.1
(formal/2012-01-01), 2012.

[18] J. Reimann, M. Seifert, and U. Aßmann. Role-based generic
model refactoring. In MoDELS’10: Proc. 13th international
conference on Model Driven Engineering Languages and Sys-
tems, Part II, volume 6395 of LNCS. Springer, 2010.

This is a pre-print! To appear in the ACM Digital Library 8 2012/5/11

