
Implementing an Authorisation Architecture in the
EUDAT Services Federation

Shiraz Memon∗§, Jens Jensen‡, Willem Elbers†, Morris Riedel∗§, Helmut Neukirchen§, Matthias Book§
∗Jülich Supercomputing Center, Jülich Germany

{a.memon, m.riedel}@fz-juelich.de
†CLARIN ERIC, Utrecht, Netherlands

willem@clarin.eu
‡STFC, Oxford, United Kingdom

jens.jensen@stfc.ac.uk
§University of Iceland, Reykjavik, Iceland

{asm25, morris, helmut, book}@hi.is

Abstract—This paper describes the requirements and archi-
tecture of authorisation in a multi-disciplinary, multi-site, multi-
stakeholder infrastructure which is using federated identity
management. Stakeholders include administrators of sites, in-
frastructure, services, as well as data owners and community
representatives. In order to be able to express and combine
policies, we have based the authorisation infrastructure on
XACML.

Index Terms—Federated Authorisatiom, XACML, AAI, e-
infrastructure, cyberinfrastructure

I. INTRODUCTION

Authorisation is the decision that is taken by a service when
a user wishes to perform an action on the service. In its
simplest form[1], it has a user accessing a service based on
the user’s identity or rights granted by an authority (the home
organisation in the RFC). In more complicated cases, rights
can be delegated, for example from the user to a client acting
on behalf of the user, or authorisation may be fine-grained and
depend on the type of action the client wishes to perform, and
on which object.

In this paper, we focus on an e-
infrastructure/cyberinfrastructure (section II-A) that has
already implemented Federated Identity Management (FIM).
It is multi-disciplinary, so users may belong to more
than one user community, or may be collaborating across
communities, so the authorisation system must meet the
requirements (section III) of user communities, home
organisations, service providers, data owners, as well as the
infrastructure operations. In addition, an authorisation service
must of course be resilient, have sufficient performance, be
sufficiently fine-grained to meet the requirements, and be
sufficiently expressive and usable that it is actually used to
implement the required protection policies. Further merits
include being based on open standards, and having multiple
interoperable implementations.

The novelty of the work presented here is precisely this
balancing act: we needed a service that interfaces with the
existing infrastructure, yet meets the needs of all the stakehold-
ers mentioned earlier. Some of the constraints are technical

(protocol, connecting to extant attribute providers), some are
a question of software engineering (service integration, tests)
and infrastructure operations (deployment time-scale), some
are policy-based (implementing and combining data and ser-
vice policies), some are architectural (section IV, and some are
a question of ”inertia” (for example interfacing with existing
practices in communities.)

II. BACKGROUND

A. EUDAT

European Data Infrastructure (EUDAT)[2] is an e-
/cyberinfrastructure that provides data storage and manage-
ment for a wide range of research areas1. The project
grants access to its services based on a FIM service
called B2ACCESS[3], which accepts several types of identity
providers (IdPs) that are external to the project, and produces
a harmonised authentication credential which is consumed by
all services in the infrastructure.

EUDAT comprises several data ”B2” services (B2SHARE,
B2DROP, B2FIND, etc.) for the user communities, plus ”in-
ternal” services that support the infrastructure itself (Wiki,
JIRA, helpdesk, etc.). Nearly all of these services require
authentication (through B2ACCESS). B2ACCESS provides
user provisioning, attribute management, credential translation,
trust management, and entitlements management, as well as
the authorisation which is the topic of this paper.

B. Challenges

The main concern of authorisation in EUDAT is to manage
the end user’s (write) access to shared resources, as well as
(read) access to data and meta-data, based on a combination
of policies from different stakeholders. In particular, there is a
set of infrastructure-specific and community-specific roles that
need to be managed, including the rights to grant the roles to
others. The community-specific roles are typically managed

1To be precise, EUDAT is both a project, EUDAT2020, funded by the
European Commission as a part of the Horizon2020 programme, and a
sustainable ”collaborative data infrastructure” run by a group of organisations,
which includes the project partners.



by people authorised by the communities, that is, they may be
maintained on disparate services outside of EUDAT and must
be imported. At the service end, EUDAT provides a range
of data services which in turn are RFC-developed on top of
diverse components developed outside of the EUDAT project.
C1 Distributed authorisation The first of the main challenges

for EUDAT is thus to implement authorisation in a way
that meets the requirements of the user communities,
and is technically implementable across the different
technologies used in the infrastructure, in particular when
a FIM model is used for authentication. It must also be
trustworthy and consistent across services, in order that
data owners feel that their data is adequately protected.

C2 Harmonisation EUDAT also needs to function as an
infrastructure, so authorisation information from the com-
munities may need to be harmonised in order to be
enforceable consistently across the infrastructure. The
second main challenge (C2) is then to make the au-
thorisation implementation consistent across all services
and across all service providers in the infrastructure,
while also making it scalable in the number of objects
it protects and the frequency of actions, and to make it
resilient against intermittent network failures.

C3 Usability The third main challenge is that the authori-
sation services should be usable. If people do not make
use of the features because they are complicated or hard
to manage, then the service will not be useful. EUDAT’s
authentication system takes the simple ”portal” approach
by default, while providing more complex approaches
(such as command line) as options for expert users,
and it is likely that the same approach will work for
authorisation.
A related, but different, aspect of this challenge is the ex-
pressiveness of the policy language: If it is hard for users
to express their policy in the language, they will work
around the authorisation system, or will go elsewhere.

C4 standards and interoperation The fourth and final chal-
lenge is to be reasonably future-proof: the authorisation
subsystem should be based on mature and open inter-
national standards and be interoperable across multiple
implementations (particularly in order to support services
implemented in different programming languages.) In
particular, this approach should foster harmonisation and
best practices between EUDAT and peer infrastructures.

In this paper, our focus is primarily on C1 and C4; we will
not have space here to deal with all and, in fact, not all have
been fully addressed yet in the project.

C. Context and Related Work

At a high level, the context of the work presented here
is the need for ”federated authorisation” to support e-/cyber-
infrastructures as summarised by [4] and [5]. In particular,
the context includes authorisation as implemented by our peer
infrastructures [5], and for both these and EUDAT, the use of
FIM needs to be followed by an authorisation model which
fits with the established authentication methods.

The original concept of Grid computing included Virtual
Organisations (VOs) as a means of managing communities,
and, as in EUDAT, there was a need to manage policies
from multiple stakeholders and resource/quotas in a suitably
expressive and flexible way [6]. Authorisation was split into
the several parts:

1) The VO negotiates with sites to obtain resources for its
members and defines the scope of the work, etc. Roles
and their rights are defined.

2) Individual users, once they can authenticate, request
membership of the VO.

3) Authorisation attributes are assigned to individual users
(by their principal)

4) Users request roles (and, possibly other authorisation
attributes).

5) When users access resources, they are typically mapped
to a local user id based on their role, or if they have no
role, a default id assigned to the VO members.

As we shall see (section IV-C), we chose to use eXtensible
Access Control Markup Language (XACML) for our imple-
mentation. The most important prior work of direct relevance
to EUDAT is [7].

Outside of the science world, authorisation in distributed
environments have been studied as well

III. REQUIREMENTS

Given the distributed nature of the EUDAT infrastructure,
we have identified the following high-level requirements:
R1 : Easy, centralised and delegated management of autho-

risation policies.
R2 : A resilient, scalable, and highly available authorisation

infrastructure.
R3 : Auditable authorisation policies.

Addressing challenges C1-C3, R1 requires there to be an
architecturally central service[8] to manage authorisation on
behalf of all the stakeholders. R2 is a standard requirement
and not specific to our project; and, addresses C2: how to
ensure that the implementation of the policies is correct and
consistent across the infrastructure.

A. Use case

We use the EUDAT B2SAFE and B2STAGE services as
an example use case to illustrate two of the requirements.
B2SAFE provides safe (i.e. replicated) storage across several
data centres, and because access is enforced at the service
level, there is a need for harmonised authorisation (R1).
B2STAGE is used to move data between EUDAT and other
infrastructures, as illustrated in Fig. 1, and introduces the
requirements R1 and R2.

A typical workflow is a community user running a simula-
tion and then importing the results into B2SAFE by using the
B2STAGE API, making multiple copies in different locations.
For this to work, we need to be able to allow write access
to specific storage resources in different data centers, based
on the user’s attributes (such as community membership and
role).



Since multiple data centers need to have access to the
authorisation policies in real time, there is a clear need for
a scalable and highly available solution (R2). If there is any
issue in the communication between EUDAT centers, each
B2SAFE should still be able to make authorisation decisions.
This demonstrates the need for a distributed authorisation
infrastructure (even if, architecturally, it is a single, central,
service: There is only one authorisation service, but it must
offer multiple service endpoints).

Fig. 1. B2SAFE, B2STAGE use-case

B. RBAC vs ABAC

Attributes are associated with user identities in the EUDAT
infrastructure. Therefore, an Attribute-based Access Control
(ABAC) approach is preferred over a more traditional Role-
based Access Control (RBAC). ABAC provides more flexi-
bility and finer granularity over the more traditional RBAC
approach: RBAC requires defining the roles upfront, whereas
ABAC requires only the upfront definition of a set of attributes.
The ABAC approach matches with the set-up of B2ACCESS,
where a fixed set of attributes is already defined and associated
with each user. Moreover, as described in [9], an ABAC-based
approach does not exclude roles. In ABAC, attributes with
role names can be introduced together with rules controlling
the modes of access to the protected objects. One of the
disadvantages of ABAC, as mentioned in [9], is that auditing
(III) is more difficult because the set of attributes/values is dy-
namic, making it more difficult to enumerate all possibilities.
Within B2ACCESS, the set of attributes is fixed, and because
of the proxy-like nature of B2ACCESS[8], attribute values
are cached at the B2ACCESS service, making it possible to
make a snapshot of all identities with access to the EUDAT
infrastructure and their associated set of attributes and values.
The set of authorisation policies is also centrally available,
making it relatively easy to compute the set of permissions
of a user at a given moment in time, allowing us to fulfil
(RIII). For example, the B2SHARE service requires following
(more than merely role) attributes to grant sharing or upload
access rights to a user: community-name (subject is associated
with), community-role (the subject has within the community),
email (to receive/send sharing requests and notifications), user
workspace, endpoint URI (resource information) and share /
upload data (the invoked action).

IV. ARCHITECTURE

Based on work in existing infrastructures – including EU-
DAT – the AARC project identified a common architecture
for authentication and authorisation[8].

A. Authentication and user management

The EUDAT authentication service, B2ACCESS, enables
users to authenticate, and provides account management. Its
features include:

1) support for multiple external authentication protocols
(OpenID Connect (OIDC), SAML, X.509, LDAP), and
translation of security tokens between different authenti-
cation protocols

2) integration with eduGAIN[10], thus supporting identities
from hundreds of Universities and Research institutions
around the world

3) provisioning of a single user account, and a unique
representation of the user identity to the infrastructure

4) user account de-provisioning (i.e. users can request to be
”forgotten”)

5) support for the proxy Identity Provider (IdP)/Service
Provider (SP) concept[8] (acting as an SP to external IdPs
and as an IdP to the SPs, i.e. the EUDAT services)

6) ”enrichment” of user identities with extra infrastructure-
specific attributes (cf. III-B)

7) management of users and attributes in groups, repre-
senting user communities (e.g. CLARIN[11], EPOS[12],
ENES[13])

B. Authorisation Model

Fig. 2. XACML architecture

Authorisation in EUDAT is based on OASIS’s XACML[14],
which specifies an access control policy language instead of
the more traditional Access Control Lists (ACLs). XACML
implicitly supports (see IV-C) Attribute-Based Access Control
(ABAC), and relies on the evaluation of subject, resource, and
environment attributes to form an access decision.



In addition, XACML provides an abstract architecture,
which consists of the following five components (see Fig-
ure 2):

1) Policy Administration Point (PAP): The PAP is an ad-
ministrative service that allows stakeholders to create, manage,
debug and store the relevant access control policies. Depending
on the reference implementation, the authorisation services
can offer a Graphical User Interface (GUI) and/or RESTful
Application Programming Interface (API) to administer the
policies. The current XACML standard and its profiles do not
have a standardised PAP API yet.

2) Policy Decision Point (PDP): Also called Context han-
dler, the Policy Decision Point (PDP) component evaluates
access requests (which may contain authorisation attributes)
against access control policies and computes a response, i.e.
an access decision. Usually the response is PERMIT or DENY,
but it can also decline to take a decision, for instance deferring
the decision to another service.

3) Policy Enforcement Point (PEP): Usually, the PEP in-
tercepts the access request, sends a request to PDP and acts
upon the response.

4) Policy Information Point (PIP): The PIP is an optional
component that is responsible for fetching subject attributes
from external attribute providers. The authorisation service can
leverage the Policy Repository (PIP) if the Policy Enforcement
Point (PEP) does not submit all required attributes with the
access decision request.

5) Policy Repository: An infrastructure needs a service
which stores the policies, where they can be accessed by the
PDP and the Policy Administration Point (PAP).

In addition to the policy language, XACML defines the
structure of access requests and responses. For XML imple-
mentations, a normative schema XML2 facilitates standards
compliance and interoperation between implementations. The
specification has also defined a Java-script Object Notation
(JSON) rendering[15], which is only limited to request/re-
sponse messages.

In addition to this, XACML defines a number of profiles
for communication and integration between services, namely:
P1 The Administration and delegation profile is used to ex-

press administration and delegation policies which enable
administrators to delegate – and limit – administrative
rights to local administrators to enforce access control
on a subset of protected resources[16] (cf. R1.)

P2 The Security Assertion Markup Language (SAML) profile
enables integration of SAMLv2[17] with XACML. The
PDP can consume SAML attribute assertions in order to
make authorisation decisions[18].

P3 The REST profile partially defines a RESTful API which
currently focuses on communication (see 2) between the
PEP and PDP [19].

P4 The Multiple decision profile allows a requester—-
typically the PEP—to send several access decision re-

2XACML XML Schema: http://docs.oasis-open.org/xacml/3.0/xacml-core-
v3-schema-wd-17.xsd

quests in one go, to which the PDP returns one answer
with multiple decisions [20].

P5 The Digital signature profile [21] defines the authenticity
and integrity of XACML schema instances using the
W3C XML-Signature Syntax and Processing standard
[22].

P6 The Hierarchical resource profile provides access con-
trol for resources organised as a hierarchy, such as file
systems, XML documents, or organisations [23].

P7 The Hierarchical Role-Based Access Control (RBAC)
profile defines the requirements for core and hierarchical
RBAC [24] through XACML policy language.

P8 Intellectual property control profile: This profile enables
service providers to write and enforce policies for the
purpose of providing access control for resources deemed
intellectual property [25].

P9 Privacy policy profile: This profile lets service providers
express privacy policies in XACML, which defines the
limits, quality, purpose, and accountability principles of
user’s personal data [26].

C. The choice of XACML as the policy language
We have briefly discussed XACML in section (IV-C). There

are currently two versions v2.0 and v3.0: we mainly focus the
latter as it comes with support for all the profiles of the former
(P2, P5, P6, P9, and includes a new set of profiles (P1, P3, P4
and P8). As some of the B2 services in EUDAT use OIDC for
authentication (see IV-A). These services will need to use the
JSON rendering and REST profile to communicate between
the service’s PEP and the PDP. The profiles in XACML v3
will thus enable us to integrate these services.

However, EUDAT takes into account certain recommen-
dations from earlier v2 based work[7], in order to promote
interoperation within the infrastructure, and, eventually, across
infrastructures

• subject names are always X.509 distinguished names as
in the SAML assertions (section IV-A), irrespective of
whether users have a certificate issued to them through
the X.509 ”gateway”[27]

• attributes are fully qualified, and the PDP matches against
the full attribute string

• future extensions will need to look at the obligations,
where the PEP specifies which types it is prepared to
honour, as they will be important for some user com-
munities3. In [7], the issue is versioning; for EUDAT
the issue is rather differences between the capabilities of
the services, meaning PEPs are likely to handle different
types of obligations.

In contrast, notable differences to [7] are
• users may, but need not, have an X.509 certificate,
• they may, but need not, have VOMS assertions assigned

to their subject name[7] (by an authority outside of
EUDAT);

3Ultimately, it’s a question of usability, as the obligations can help com-
municate additional constraints. However, this use case is beyond the scope
of the present paper.



• Users may be members of more than one community
(”VO” in [7]) and will need to simultaneously assert
membership of both/all, as well as roles in each one.

Policies are defined by the stakeholders. Obligations are
defined by them and it is up to the PDP to send it and to
the PEP to implement it.

The EUDAT operations team introduced service-specific
attributes for each of the services. Requirement R1 enables
administrators to give, say, B2SHARE-specific attributes to
users. With time, the associated service-specific authorisation
policies will become more sophisticated, and will need main-
taining by multiple parties. At the same time, each centre will
define policies for all its own services. Thus, there is a need to
combine policies defined by different stakeholders into policy
sets applicable to the request, with appropriate combination
algorithms. Although we are not using it yet, we expect the
delegated administration profile [16] will make this process
easier.

D. Authorisation in EUDAT

Figure 3 depicts the XACML-based hierarchical architec-
ture, which aims to address the requirements of implementing
consistent [R1] yet highly available [R2] authorisation in a
distributed infrastructure,

From the top of the component hierarchy, EUDAT
Authentication and Authorisation Infrastructure (AAI) consists
of a central PAP and Policy Repository (PRP), the latter
being a database of rules. At this level, rules are defined
as Policy Sets for each type of services (section IV-C.) The
service-specific policies are managed by service administra-
tors through the central PAP service. Delegation of policy
administration rights will use the XACML v3.0 Administration
and Delegation profile to define the policies for access to the
resources. The changes made at the top-level PAP update the
policies at the top-level PRP, a database of policies.

Eventually, delegation of administrative rights should en-
compass all policy stakeholders: data owners, community
admins, resource admins, site admins, and the infrastructure
admins themselves. The combination of policies needs to
resolve based on the target: site admins will have priority for
services at their site, community admins are authoritative only
for their own data and their own users, etc.

For each EUDAT data center, there should be a full XACML
stack with a PEP for each service (or a group of closely co-
located services), and a single PDP for the center together with
a local, read-only PRP. Although the PIP is displayed in Fig.
3, all the required information (attributes sent by B2ACCESS)
is in practice sent via the PEP to the PDP.

Administrator creates or updates policy through the central
(read-write) PAP (Fig. 3). The central PRP pushes these
policies or policy sets to the site PRP.Each site PRP receives
the update and through an eventually consistent [28] policy
database updates its information. The PDP accesses only the
relevant policies from the site PRP in order to evaluate the
access decision requests, e.g. for a B2SHARE PEP, it will
request only B2SHARE policy sets.

Fig. 3. The EUDAT authorisation architecture

In future work we will introduce a message broker between
the site and the central PRP to ensure the reliability of the
updates.

E. Access control flow

Fig. 4. Service authorisation flow

We now revisit the use case from section III-A, but first
from a generic service point of view. Fig. 4 shows the generic
authorisation flow for a user accessing a B2-service. The EU-
DAT community user (e.g. CLARIN, EPOS, ENES) initiates
the authorisation flow by trying to execute a privileged action
on the B2-service. This, however, requires appropriate rights
on the service. Since the user is not authenticated yet, they
will be redirected to the B2ACCESS service for authentication
(section IV-A).



After successful FIM authentication to B2ACCESS,
B2ACCESS returns an authentication token along with au-
thorisation attributes to the B2-service, which will then retry
the privileged operation.

During the retry operation, the service PEP sends an autho-
risation request to the (site-local) PDP service, which contains
the user attributes, action and resource information. The PDP
service evaluates the request (and attributes within) against the
policies stored in the PRP and returns the decision which is
then enforced by the PEP.

Returning to the use case (Fig. 1), the user wishes to
import result data from their simulation into EUDAT via
the B2STAGE service, which in turn ensures replication of
data across multiple B2SAFE instances. Both B2STAGE and
B2SAFE check authorisation.

Traditionally, users access the B2STAGE service through
a HTTP API using command line clients, with a delegated
X.509 certificate. The certificate in the current implementation
always contains authorisation attributes in SAML format[27]
in a custom extension[29]. The B2STAGE can thus extract the
authorisation attributes directly after successful authentication.

Assuming the user is authorised by B2STAGE based on
the attributes, the service obtains a delegated certificate from
the certificate the user client used to authenticate[30], which
in turn contains the certificate with authorisation data4. Data
is copied through B2STAGE to the B2SAFE instances using
GridFTP (cite GridFTP), and the B2SAFE services in turn
perform their own authorisation check.

As with B2STAGE, the authentication subsystem of
B2SAFE extracts the SAML assertion from the relevant cer-
tificate(s), and builds a PDP request for the requested action
(data ingest) to grant/deny the access.

V. COMPARISON OF IMPLEMENTATIONS

As discussed briefly about well-known XACML imple-
mentations in Sect. IV-C, this section provides a high-level
analysis of those implementations. It skips those without
support for a remote PDP interface. Taking the authorisation
requirements of EUDAT into account, the profiles required by
the infrastructure services are Core, REST and JSON. XACML
version 3.0 seemingly is the adequate standard, as the later
two profiles are only available in the specification version.
Since it would normally be a daunting task for the operators
to define and alter policies in a raw XML format, having a
web- or desktop-based graphical user interface, specifically
PAP - is a key to integration of the EUDAT services with the
authorisation system.

Table I provides a list of open source and commercial
implementations, with supported profiles and some offers GUI
to manage the access control policies. It can be observed that
there is no implementation that can address all of the EUDAT
requirements, however, WSO2 Identity Server offers most

4OGF VOMS attribute PROCessing Working Group,
https://redmine.ogf.org/projects/voms-proc-wg

of the functional features except the replication of XACML
policies from the root PAP node to the lower-level PDP
servers (see Fig. 3). Therefore, some additional effort is likely
required before the different architectural components of the
authorisation system can be deployed.

VI. CONCLUSION AND FUTURE WORK

When designing an authorisation service for several types
of services in the EUDAT distributed infrastructure, the main
challenges were to implement consistent and harmonised au-
thorisation across services and sites, supporting stakeholders
from multiple communities through user- (or admin-) friendly
interfaces, and based on established standards and interopera-
ble implementations.

The authorisation infrastructure is based on XACML, a
declarative policy language, deployed in a hierarchical fashion,
with locally cached policies and update propagation. At the
time of writing, the current deployment is somewhat limited
as it only involves infrastructure administrators as policy man-
agers (no delegation), and authorisation is not yet integrated
with all B2 services. The current deployment is simultaneously
a feasibility study, a partial implementation, and an indicator
of future directions. Apart from the obvious ones, of wider
deployment in more production services, future directions also
include:

• Implementing the delegated administrative rights, in order
to support the multi-stakeholder management of policies;

• Interoperation with other infrastructures, notably EGI,
which uses XACML version 2, and PRACE which uses
an LDAP based system.

• Implementation of obligations.

ACKNOWLEDGEMENT

EUDAT2020 is funded by the EU Framework H2020 – DG
CONNECT e-Infrastructures, contract no. 654065.

REFERENCES

[1] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross,
B. de Bruijn, C. de Laat, M. Holdrege, and D. Spence, “Aaa autho-
rization framework,” Tech. Rep., 2000.

[2] W. Gentzsch, D. Lecarpentier, and P. Wittenburg, “Big data in science
and the eudat project,” in 2014 Annual SRII Global Conference, April
2014, pp. 191–194.

[3] “B2access,” 2017. [Online]. Available: https://www.eudat.eu/services/
b2access

[4] T. A. Study, “TERENA AAA study final report: Advancing
technologies and federating communities,” 2012. [Online]. Available:
https://wiki.geant.org/display/aaastudy/AAA+Study+Home+Page

[5] K. Christos, L. Nicolas, van Dijk Niels, and S. Peter, “Deliverable
djra1.1: Analysis of user community and service provider requirements,”
AARC Project, Project Deliverable AARC-DJRA1.1, 10 2015.
[Online]. Available: https://aarc-project.eu/wp-content/uploads/2015/10/
AARC-DJRA1.1.pdf

[6] K. Keahey, V. Welch, S. Lang, B. Liu, and S. Meder, “Fine-grain
authorization policies in the grid: Design and implementation,” in Proc.
1st Int’l Workshop on Middleware for Grid Computing, 2003. [Online].
Available: http://toolkit.globus.org/alliance/publications/papers/gauth02.
pdf

[7] R. Ananthakrishnan, G. Garzoglio, and O. Koeroo, “An XACML
attribute and obligation profile for authorization interoperability
in grids,” Open Grid Forum, Jan. 2013. [Online]. Available:
https://www.ogf.org/documents/GFD.205.pdf

https://www.eudat.eu/services/b2access
https://www.eudat.eu/services/b2access
https://wiki.geant.org/display/aaastudy/AAA+Study+Home+Page
https://aarc-project.eu/wp-content/uploads/2015/10/AARC-DJRA1.1.pdf
https://aarc-project.eu/wp-content/uploads/2015/10/AARC-DJRA1.1.pdf
http://toolkit.globus.org/alliance/publications/papers/gauth02.pdf
http://toolkit.globus.org/alliance/publications/papers/gauth02.pdf
https://www.ogf.org/documents/GFD.205.pdf


Name Spec. Version Supported Profiles Language License UI
AT&T XACML v2.0, v3.0 Core, Multiple Decision, JSON,

REST
Java Apache 2.0 3

ndg-xacml v2.0 Core,SAML 2.0 Python BSD 7
ARGUS v2.0 Core,SAML 2.0 Java & C Apache 2.0 7

WSO2 Identity Server v3.0 Core,Multiple Decision, JSON,
REST, Administrative delegation

Java Apache 2.0 3

FIWARE AuthzForce CE v3.0 Core, Hierarchical RBAC, Multiple
Decision, JSON, REST, Data Loss
Prevention / Network Access Con-
trol, Addition Combing Algorithms

Java GPL 7

OpenAZ v3.0 Core, Multiple Decision, JSON,
REST

Java Apache 2.0 3

Axiomatics Policy Server v3.0 Core, Multiple Decision Profile,
JSON, REST, Hierarchical RBAC,
Hierarchical Resource, Privacy Pol-
icy, SAML 2, XML Digital signa-
ture

Java, .NET Commercial 3

TABLE I
ANALYSIS OF IMPLEMENTATIONS

[8] A. Biancini, L. Florio, M. Haase, M. Hardt, M. Jankowski, J. Jensen,
C. Kanellopoulos, N. Liampotis, S. Licehammer, S. Memon, N. van
Dijk, S. Paetow, M. Prochazka, M. Sallé, P. Solagna, U. Stevanovic,
and D. Vaghetti, “AARC: first draft of the blueprint architecture
for authentication and authorisation infrastructures,” CoRR, vol.
abs/1611.07832, 2016. [Online]. Available: http://arxiv.org/abs/1611.
07832

[9] T. R. W. Ed Coyne, “Abac and rbac: Scalable, flexible, and auditable
access management,” NIST, Report, 2013. [Online]. Available:
http://csrc.nist.gov/groups/SNS/rbac/documents/coyne-weil-13.pdf

[10] “edugain,” 2017. [Online]. Available: http://www.edugain.org
[11] “Clarin,” 2017. [Online]. Available: https://www.clarin.eu
[12] D. Bailo, K. G. Jeffery, A. Spinuso, and G. Fiameni, “Interoperabil-

ity oriented architecture: The approach of epos for solid earth e-
infrastructures,” in 2015 IEEE 11th International Conference on e-
Science, Aug 2015, pp. 529–534.

[13] S. Joussaume and R. Budich, The Infrastructure Project of the
European Network for Earth System Modelling: IS-ENES. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 5–9. [Online].
Available: https://doi.org/10.1007/978-3-642-36597-3 2

[14] B. Parducci, H. Lockhart, and E. Rissanen, “extensible access
control markup language (xacml) version 3.0,” OASIS, OASIS
Standard xacml-3.0-core-spec-en, 1 2013. [Online]. Available: http:
//docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.pdf

[15] B. Parducci, H. Lockhart, and D. Brossard, “Json profile of xacml 3.0
version 1.0,” OASIS, OASIS Standard xacml-json-http-v1.0, 12 2014.
[Online]. Available: http://docs.oasis-open.org/xacml/xacml-json-http/
v1.0/xacml-json-http-v1.0.pdf

[16] B. Parducci, H. Lockhart, and E. Rissanen, “Xacml v3.0 administration
and delegation profile version 1.0,” OASIS, OASIS Standard xacml-
json-http-v1.0, 11 2014. [Online]. Available: http://docs.oasis-open.org/
xacml/3.0/xacml-3.0-administration-v1-spec-en.pdf

[17] C. P. Cahill, J. Hughes, H. Lockhart, M. Beach, R. M. R.
Randall, T. Wisniewski, I. Reid, P. Austel, M. Hondo, M. McIntosh,
T. Nadalin, N. Ragouzis, S. Cantor, R. B. Morgan, P. C.
Davis, J. Hodges, F. Hirsch, J. Kemp, P. Madsen, S. Anderson,
P. Mishra, J. Linn, R. Philpott, J. Moreh, A. Anderson, E. Maler,
R. Monzillo, and G. Whitehead, “Assertions and protocols for
the oasis security assertion markup language (saml) v2.0,” OASIS,
OASIS Standard saml-core-2.0-os, 03 2005. [Online]. Available:
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

[18] B. Parducci, H. Lockhart, and E. Rissanen, “Xacml saml
profile version 2.0,” OASIS, OASIS Standard xacml-saml-profile-
v2.0, 08 2014. [Online]. Available: http://docs.oasis-open.org/xacml/
xacml-saml-profile/v2.0/xacml-saml-profile-v2.0.pdf

[19] B. Parducci, H. Lockhart, and R. Sinnema, “Rest profile of xacml
v3.0 version 1.0,” OASIS, OASIS Standard xacml-3.0-core-spec-en, 11
2014. [Online]. Available: http://docs.oasis-open.org/xacml/xacml-rest/
v1.0/xacml-rest-v1.0.pdf

[20] B. Parducci, H. Lockhart, and E. Rissanen, “Xacml v3.0 multiple
decision profile version 1.0,” OASIS, OASIS Standard xacml-

3.0-multiple-v1-spec-en, 05 2014. [Online]. Available: https://docs.
oasis-open.org/xacml/3.0/xacml-3.0-multiple-v1-spec-en.pdf

[21] B. Parducci and H. L. E. Rissanen, “Xacml v3.0 xml digital signature
profile version 1.0,” OASIS, OASIS Standard xacml-3.0-dsig-v1.0, 05
2014. [Online]. Available: http://docs.oasis-open.org/xacml/3.0/dsig/v1.
0/xacml-3.0-dsig-v1.0.pdf

[22] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon, “Xml
signature syntax and processing version 2.0,” W3C, W3C Standard
xmldsig-core2, 07 2015. [Online]. Available: https://www.w3.org/TR/
xmldsig-core2/

[23] B. Parducci, H. Lockhart, E. Rissanen, and R. Levinson, “Xacml v3.0
hierarchical resource profile version 1.0,” OASIS, OASIS Standard
xacml-3.0-hierarchical-v1-spec-en, 05 2014. [Online]. Available: http:
//docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.pdf

[24] B. Parducci, H. Lockhart, and E. Rissanen, “Xacml v3.0
core and hierarchical role based access control (rbac) profile
version 1.0,” OASIS, OASIS Standard xacml-3.0-rbac-v1-spec-en, 10
2014. [Online]. Available: http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-rbac-v1-spec-en.pdf

[25] B. Parducci, H. Lockhart, J. Tolbert, C. Hayes, R. Hill, P. Tyson,
A. Han, D. Thorpe, R. Sinnema, E. Rissanen, and D. Brossard, “Xacml
intellectual property control (ipc) profile version 1.0,” OASIS, OASIS
Standard xacml-3.0-ipc-v1-spec-en, 01 2015. [Online]. Available:
http://docs.oasis-open.org/xacml/3.0/ipc/xacml-3.0-ipc-v1-spec-en.pdf

[26] B. Parducci, H. Lockhart, and E. Rissanen, “Xacml v3.0 privacy policy
profile version 1.0,” OASIS, OASIS Standard xacml-3.0-privacy-v1-
spec-en, 01 2015. [Online]. Available: http://docs.oasis-open.org/xacml/
3.0/xacml-3.0-privacy-v1-spec-en.pdf

[27] A. S. Memon, J. Jensen, A. Cernivec, K. Benedyczak, and M. Riedel,
“Federated authentication and credential translation in the eudat col-
laborative data infrastructure,” in 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing, Dec 2014, pp. 726–731.

[28] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52, no. 1,
pp. 40–44, Jan. 2009. [Online]. Available: http://doi.acm.org/10.1145/
1435417.1435432

[29] S. Farrell, R. Housley, and S. Turner, “An internet attribute certificate
profile for authorization,” Internet Requests for Comments, RFC 5755,
January 2010. [Online]. Available: https://tools.ietf.org/pdf/rfc5755

[30] S. Tuecke, V. Welch, D. Engert, L. Pearlman, and M. Thompson, “In-
ternet x.509 public key infrastructure (pki) proxy certificate delegation
profile,” 6 2004, rFC3820.

http://arxiv.org/abs/1611.07832
http://arxiv.org/abs/1611.07832
http://csrc.nist.gov/groups/SNS/rbac/documents/coyne-weil-13.pdf
http://www.edugain.org
https://www.clarin.eu
https://doi.org/10.1007/978-3-642-36597-3_2
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-en.pdf
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-v1.0.pdf
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-v1.0.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-administration-v1-spec-en.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/xacml/xacml-saml-profile/v2.0/xacml-saml-profile-v2.0.pdf
http://docs.oasis-open.org/xacml/xacml-saml-profile/v2.0/xacml-saml-profile-v2.0.pdf
http://docs.oasis-open.org/xacml/xacml-rest/v1.0/xacml-rest-v1.0.pdf
http://docs.oasis-open.org/xacml/xacml-rest/v1.0/xacml-rest-v1.0.pdf
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-multiple-v1-spec-en.pdf
https://docs.oasis-open.org/xacml/3.0/xacml-3.0-multiple-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/dsig/v1.0/xacml-3.0-dsig-v1.0.pdf
http://docs.oasis-open.org/xacml/3.0/dsig/v1.0/xacml-3.0-dsig-v1.0.pdf
https://www.w3.org/TR/xmldsig-core2/
https://www.w3.org/TR/xmldsig-core2/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-hierarchical-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/ipc/xacml-3.0-ipc-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-privacy-v1-spec-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-privacy-v1-spec-en.pdf
http://doi.acm.org/10.1145/1435417.1435432
http://doi.acm.org/10.1145/1435417.1435432
https://tools.ietf.org/pdf/rfc5755

