
From Design to Test with UML

–
Applied to a Roaming Algorithm

for Bluetooth Devices

Zhen Ru Dai1, Jens Grabowski2, Helmut Neukirchen2, and Holger Pals3

1 Institute for Telematics, University of Lübeck, Ratzeburger Allee 160
D-23538 Lübeck, Germany, dai@itm.uni-luebeck.de

2 Institute for Informatics, Software Engineering for Distributed Systems Group,
University of Göttingen, Lotzestrasse 16-18, D-37083 Göttingen, Germany

{grabowski,neukirchen}@cs.uni-goettingen.de
3 Institute of Computer Engineering, University of Lübeck, Ratzeburger Allee 160

D-23538 Lübeck, Germany, pals@iti.uni-luebeck.de

Abstract. The UML Testing Profile provides support for UML based
model-driven testing. This paper introduces a methodology of how to
use the testing profile in order to modify and extend an existing UML
design model for test issues. As a case study, a new roaming algorithm
for bluetooth devices has been develped at the University of Lübeck, is
modelled using UML. The usability of the UML Testing Profile will be
explained by applying it to this model.

1 Introduction

The Unified Modeling Language (UML) is a visual language to support the
design and development of complex object-oriented systems [1]. While UML
models focus primarily on the definition of system structure and behaviour, they
provide only limited means for describing test objectives and test procedures.
Furthermore, the growing system complexity increases the need for solid testing.
Thus, in 2001, a consortium is built by the Object Management Group (OMG)
in order to develop a UML 2.04 profile for the testing domain [3, 4]. Currently,
the UML Testing Profile project [5] is at its finalization stage.

A UML profile provides a generic extension mechanism for building UML
models in particular domains. The UML Testing Profile is such an extension
developed for the testing domain. It bridges the gap between designers and
testers by providing a means for using UML for both system modeling and
4 UML 2.0 has been adopted by the OMG in June 2003. Currently, it is at its stan-

dardization finalization stage. In this paper, we follow the approach of U2 Partners
consortium [2], who is the main submitter of UML 2.0. When talking about UML,
we only refer to version 2.0.

2 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, Holger Pals

test specification. This allows a reuse of UML design documents for testing and
enables test development in an early system development phase [6].

In this paper, we provide a methodology of how to apply UML Testing Pro-
file concepts to an existing UML design model effectively. As a case study, the
methodology will be evaluated by applying it to a UML model for roaming with
Bluetooth devices.

This paper is structured as follows: After a short introduction of UML Test-
ing Profile in the next section, a methodology will be provided (Section 3) where
mandatory and optional test aspects of UML Testing Profile are discussed. In
Section 4, we will introduce potential roaming techniques for data transfer sce-
narios using Bluetooth hardware devices as a case study. A corresponding UML
model is given in Section 5. Section 6 evaluates our testing methodology by
applying it to the UML model. Some conclusions are drawn in Section 7.

2 The UML Testing Profile (UTP)

The UML Testing Profile provides concepts to develop test specifications and
test models for black-box testing [7]. The profile introduces four concept pack-
ages covering the aspects: test architecture, test behavior, test data and time
(Figure 1) [8]. Together, these concepts define a modeling language for visualiz-
ing, specifying, analyzing, constructing and documenting a test system.

Test Architecture Test Behavior Test Data Time
Concepts Concepts Concepts Concepts

SUT Test objective Wildcards Timer

Test components Test case Logical partition Time zone

Test suite Defaults Coding rules

Test configuration Verdicts

Test control Validation action

Arbiter Test trace

Utility part Log action

Fig. 1. UML Testing Profile Concepts

The test architecture package covers the concepts for specifying test compo-
nents, the interfaces of and connections among test components and between test
components and System Under Test (SUT). The test behavior package embodies
concepts of specifying actions necessary to evaluate the objective of a test. Test
behaviors can be defined by any behavioral diagram of UML 2.0, e.g. as inter-
action diagrams or state machines. The test data package includes concepts for
specifying test data. The time package defines concepts to constrain and control
test behavior with regard to time.

From Design to Test with UML 2.0 3

3 A Methodology for UML Testing Profile

In this section, we introduce a methodology for using the UML Testing Profile
effectively after having received a detailed design model which should be tested.
In the following, we determine design model to be the system design model in
UML and the test model to be the UML model enriched with UML Testing
Profile concepts.

Having a design model, a tester may have to specify tests for the system. This
can be done by extending the design model with UML Testing Profile concepts.
The following aspects must be considered when transforming a design model
into a test model:

First of all, define a new UML package as the test package of the system.
Import the classes and interfaces from the system design package in order to
get access to message and data types in the test specification. Next, start with
the specification of the test architecture and continue with test behavior spec-
ifications. Test data and time are mostly already comprised in either the test
architecture (e.g. timezone or data pool) or test behavior (e.g. timer or data
partitioning) specifications.

Below, issues regarding test architecture and test behavior specifications are
listed. They are subdivided into two categories: mandatory issues and optional is-
sues. Mandatory issues can normally be retrieved directly from the design model,
while optional issues are specific to test requirements and, therefore, can seldom
be retrieved from existing UML diagrams. However, they are not always needed
for the test model. The most important issues are the specification of SUT com-
ponents, test components, test cases and verdict settings:

I. Test architecture:
i. Mandatory:

– Assign the system component(s) you would like to test to SUT.
– Depending on their functionalities, test components have to be de-

fined. Try to group the system components (except the SUT) to test
components.

– Specify a test suite class listing the test attributes and test cases,
also possible test control and test configuration.

ii. Optional:
– In order to define the ordering of test case execution, specify the test

control. The simplest way is to string the test cases together. In more
complex test controls, loops and conditional test execution may be
specified.

– Test configuration can be easily retrieved by means of existing inter-
action diagrams: Whenever two components exchange messages with
each other, assign a communication channel between the compo-
nents. If there is no interaction diagram defined in the design model,
connect the test components and SUT to an appropriate test config-
uration so that the configuration is relevant for all test cases included
in the test suite.

4 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, Holger Pals

– Determine utility parts within the test configuration.
– Determine an arbiter for test verdict arbitration.
– Assign timezones to the components. Timezones are normally needed

if a distributed test system is built and time values of different com-
ponents need to be compared.

– Provide coding rule specifications.
II. Test behavior:

i. Mandatory:
– For designing the test cases, take the given interaction diagrams of

the design model and change (i.e. rename or group) the instances
and assign them with stereotypes of the UML Testing Profile (i.e.
test component or SUT) according to their functionalities.

– Assign verdicts at the end of each test case specification. Usually, the
verdict in a test case is set to pass.

ii. Optional:
– Specify default behaviors using wildcards for setting a fail or inconclu-

sive verdict.
– Define time events by means of timers or time constraints.

4 A Case Study: Roaming with Bluetooth Devices

Bluetooth is an established standard for short-range wireless communication.
The Bluetooth specification enables small devices to interact within a short
range. The standards related to Bluetooth include both the hardware (radio,
baseband and hardware interface) and basic protocol layers that allow Bluetooth
software to run on different Bluetooth enabled devices.

The current Bluetooth standard does not support roaming of Bluetooth de-
vices [9]. If a device is losing the link to its master, no provision is made to
transfer the connection to another master. Nevertheless, roaming within Blue-
tooth piconets might be useful in some cases, e.g. for Bluetooth-enabled network
access using LAN access points. Assuming having more than one Bluetooth
LAN access point, roaming might be useful for having a seamless connection
even while moving.

4.1 The Application

The need for a basic roaming support for Bluetooth devices descends from a
project at the University of Lübeck and several other academic and industrial
partners [10]. The project is situated in medical environment. Its goal is to
replace the traditional cable-based monitoring of patients during surgical treat-
ments with a wireless transmission of the patient’s monitoring data using Blue-
tooth hardware devices. By transmitting the sensor data via radio, the mobil-
ity of the patient will be increased significantly, the number of artifacts (often
caused by the cables themselves) are reduced as well as the overall cost for the
replacement of broken cables.

From Design to Test with UML 2.0 5

Sensor data like electrocardiogram (ECG), temperature or blood pressure are
gathered at a mobile device, digitized and transmitted via radio to fixed units
(receivers). The mobile device is fixed at the patient’s bed (or the patient itself)
which may be moved during the entire monitoring period. One of the advan-
tages of this wireless monitoring is a continuous data transmission throughout
all the different stages the patient passes through (e.g. preparation, anesthesiol-
ogy, surgery, wake up, intensive care). Thus, the connection between the mobile
devices and the receivers mounted at the hospital’s walls or ceilings must be
handed over from one receiver to the next while the patient is moving. The re-
ceivers have to be mounted in such a way that the entire area the mobile device
can reach is covered. To allow a seamless connection, the areas covered by the
antennas of two adjacent receivers are overlapping.

In this scenario, different units (e.g. sensor units, digitizing unit and radio
transmission unit) share the same rechargeable battery pack. The electric power
consumption plays an important role in the design of the system. As a conse-
quence, a mobile device only consists of a small embedded device including the
Bluetooth chipset and a low-current microcontroller without a complete Blue-
tooth protocol stack running on it. From now on the term Bluetooth device
denominates a device using a Bluetooth hardware unit to send and receive data
without necessarily using the complete Bluetooth protocol stack.

4.2 Roaming for Bluetooth

Our roaming approach assumes that all masters are connected to a fixed network.
The mobile devices are usually moving along the masters. If a slave runs the risk
of losing connection to its actual master, the connection must be handed over to
the next master. The slave prevents the loss by periodically checking the quality
of the link to the master. This can be done using the HCI Get Link Quality
command defined in the Bluetooth standard [9]. If the quality drops below a
certain threshold value the next master will be chosen. The slave tries to connect
directly to the next master using the Bluetooth paging mechanism, knowing
to which master it has to contact to next. Herefore, movements of the slave
are tracked by a Location Server, which updates and provides slave’s spacial
information in form of a roaming list whenever the slave changes its master. The
current master receives the roaming list from Location Server and forwards it to
the slave [11].

The Activity Diagram in Figure 2 shows the activities of a slave necessary for
roaming. The slave tries to connect to a master. If the connection is successful,
the updated roaming list is transferred to the slave and data can be sent. In
parallel, the link quality between slave and master is observed. If the quality gets
bad, the slave will look in the roaming list for a new master and try to connect
to that master directly. If, for any reason, no connection can be established, a
warning message is sent to the user (e.g. by a warning light or a special sound
indicating that a problem has occurred). Another warning message is sent to
the last master. If the connection to the last master is still alive, the reception

6 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, Holger Pals

Slave BTRoaming Activities

get
roaming list

new master
Connect to

[connection
confirmed]

[n
ew

 m
as

te
r !

=
N

U
LL

]
[connection not confirm

ed]

[link quality == good]

get
link quality send data

calculate
new master

warnings

[link quality
== bad]

[new master
== NULL]

send

Fig. 2. Roaming Algorithm as Activity Diagram

of a warning message can be used to initiate appropriate exception handling
mechanisms.

Figure 3 shows the design of the protocol stack resulting from the proposed
roaming approach: Special roaming layers (Slave Roaming Layer and Master
Roaming Layer) are added. They take care of the correct transfer of the con-
nections. Our roaming approach makes no use of the higher protocol stacks of
Bluetooth. Therefore, the roaming layers are implemented directly on the hard-
ware interface called Host Controller Interface (HCI). The application layers are
set upon the roaming layers. The interface from roaming layer to application
layer is called Slave Roaming Interface (SRI) and Master Roaming Interface
(MRI), respectively.

Baseband

Bluetooth Radio

Slave: Master:

LNIHCIHCI

Link Manager

Slave Application Master Application

Bluetooth Radio

Baseband LAN

Roaming Layer
Slave

Link Manager

Master
Roaming Layer

SRI

Hardware
BT−

MRI(Virtual Connection)

Data Exchange

Radio Connection

Hardware

Master
BT−

Slave

Fixed Connection

Fig. 3. Protocol Stack with Roaming Layer

From Design to Test with UML 2.0 7

Additionally, a master is specified as a fixed network node. Thus, it also
embodies the LAN protocol stacks to be able to communicate with the local
network. The interface between the Master Roaming Layer and the Ethernet is
called Local Network Interface (LNI).

5 From Design ...

In addition to the Bluetooth roaming algorithm presented in the previous sec-
tion, we also investigated the applicability of UML 2.0 [4, 12, 1] for modeling
our roaming approach. The usage of a standardized and widely accepted mod-
eling language like UML has several advantages: It supports the communication
among soft- and hardware designers, avoids ambiguities in the description and al-
lows the usage of commercial tools for documentation, analysis, implementation
and testing during system development. In this section, we describe an archi-
tectural view on our Bluetooth roaming scenario by means of a UML package
diagram, show the communication among the UML Bluetooth classes in form
of sequence diagrams and present the local behavior of a slave by using a UML
state machine.

Figure 4 shows a UML package diagram with different classes involved in our
Bluetooth roaming approach. Similarity can be recognized between the classes
in Figure 4 and the Bluetooth protocol stacks in Figure 3. The slave classes are
called Slave Application, Slave BTRoaming and Slave BT-HW (Bluetooth Hardware).
The interfaces SRI and HCI connect the class components with each other. A
Slave BT-HW is connected to one Master BT-HW. Similar to the slave classes and
interfaces, there are the classes Master Application, Master BTRoaming and Master

BT-HW and the interfaces MRI and HCI on the master’s side.
Master BTRoaming class is connected to the Location Server, which represents a

node in the local network, by means of the interface LNI. Location Server owns a
Net Struct Table and several Slave Roaming Lists. There is exactly one roaming list
for each slave. The Net Struct Table is a static table which provides information

Table
Struct_

Net_

Slave_
Roaming_

List

LNI

MRI

HCIHCI

SRI

1*

*

1 1 *

11
Slave

Slave

Slave Master

Location
Server

BTRoaming
Master

BTRoaming

Application Application

BT−HW BT−HW
Master

1

1

BluetoothRoaming

Fig. 4. Bluetooth Roaming Package

8 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, Holger Pals

: Master
Master1_BT

: Master
BT-HW

Master1_R
: Master

BTRoaming

Master2_BT
: Master

BT-HWServer
: Location

Master2_R

BTRoaming

con_confirm

roamingList(RList)roamingList(RList)

quality(bad)

quality(good)

get_link_quality

BT-Roamingsd
: Slave

Application
: Slave : Slave

BT-HWBTRoaming

data

data

makeList(Slave)

con_request con_request
con_accept

con_confirm

connected(Slave)

get_link_quality

con_confirm
connected(Slave)

roamingList(RList,Slave) roamingList(RList,Slave)

connected(Slave)

roamingList(RList)

data

{0,5..0,5}

RList :=

RList :=

data

data

Search_NewMaster()
newMaster :=

con_request

con_accept

con_confirm

data

roamingList(RList,Slave)
makeList(Slave)

con_confirm
con_confirm

con_request

connected(Slave)

roamingList(RList,Slave)

roamingList(RList)

get_link_quality

quality(good)

ref

ref

ref

Fig. 5. Roaming Scenario Design

about the structure of the local network and the physical position of the masters
as necessary for calculating each Slave Roaming List. In contrast, the instances of
Slave Roaming List are changing dynamically. The Slave Roaming List is updated by
the Location Server whenever a slave roams to a new master. Since a copy of each
updated Slave Roaming List is transferred to its slave there is also a one-to-one
association between Slave Roaming List and Slave BTRoaming.

In Figure 5, the sequence diagram depicts a detailed roaming scenario. There
are eight different instances in the diagram: One location server instance called
Location Server, three slave instances named Slave Application, Slave BTRoaming,
Slave BT-HW, and four masters instances with BT-HW and BTRoaming instances
for each of Master1 and Master2.5

5 The application instances of Master1 and Master2 are not shown because roaming is
independent from the application layers.

From Design to Test with UML 2.0 9

sd

:Slave
Application

:Slave
BTRoaming

RList.nextElement
NewMaster :=

Search_NewMaster(): String

alt

"warning: RList empty"

:Slave
BT-HW

Search_
NewMaster

"warning: RList empty"
[NewMaster == NULL]

[NewMaster !=NULL]

NULL

NewMaster

Fig. 6. Search NewMaster() Function

The scenario starts with a connection request from the application instance of
the Slave to Master1.6 The hardware instance Master1 BT confirms the connection
establishment and the roaming instance Master1 R informs the Location Server

that Slave is now under its responsibility.7

Hence, the Location Server calculates and updates the roaming list RList of the
Slave and sends it to Master1 R. Master1 R forwards the RList immediately to the
Slave Roaming instance. Now, data can be exchanged between Slave and Master1

until the link quality becomes bad.
The verification of the link quality is performed periodically every 0.5s be-

tween the Slave BTRoaming instance and the Slave BT-HW Instance. If the link
quality is proved to be bad, a new master is needed. For that, the function
Search NewMaster() is called by Slave BTRoaming. This function looks up in the
RList and picks out the name of the next neighbouring master and returns the
name of the new Master to Slave BTRoaming (Figure 6). In case that RList is
empty, a warning signal will be sent to both the Slave Application and the old
Master (if it is still possible).

In our scenario (in Figure 5), the new Master is Master2. Thus, a connection
request will be sent from Slave Roaming instance to Master2 R instance. If Master2

BT-HW confirms a successful connection establishment, the Location Server will
again be informed about the new status of Slave. It updates the roaming list and
sends it to the roaming instance of the new master. Master2 R forwards the list
to Slave BTRoaming and data exchange can be started.

A set of scenarios, like the ones presented in Figures 5 and 6, can be analyzed
and used to generate local views of class behaviors. One possibility of UML to
describe such local behaviors are state machines.

6 In order to provide an intuitive understanding of the signals, we abstracted from the
signal names in the Bluetooth specification [9].

7 Since there is a lot forwarding traffic between the instances, we only describe the
source and the destination instances of a message.

10 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, Holger Pals

con_request/
con_requestafter(2s)

[RList empty]

disconnect

con_request
to NewMaster

Roaming

Disc_Wait

Disconnect

Disconnected
statemachine

con_confirm/con_confirm

[!(RList empty)]
con_request to NewMaster
quality(bad)/

Slave BTRoaming

after(2s)/

Connect

Link_Quality
Check_

data/data

after(0.5s)/
get_link_quality

roamingList(RList)

quality(good)

con_confirm/
con_confirm discon_request/

discon_request

Connected

after(2s)/

Fig. 7. Statemachine of class Slave BTRoaming

As an example, Figure 7 shows a state machine of the slave roaming instance
Slave BTRoaming. This instance receives messages from the Slave Application in-
stance and the slave hardware (Slave BT-HW) instance. The diagram contains the
states Disconnected, Connected and Roaming. Disconnected is a composite state with
multiple sub-states, Connected has orthogonal sub-states running in parallel.

In the beginning, the Slave BTRoaming instance is in the sub-state Disconnect

of state Disconnected. If it receives a connection request from the application
instance, it forwards the request to the hardware instance and goes into the sub-
state Disc Wait, waiting for a connection confirmation from the hardware. If the
confirmation message does not arrive within 2 seconds, Slave BTRoaming instance
goes back to the Disconnect state. If the confirmation is received by the roaming
instance within time limit, the slave is Connected and goes into the sub-state
Connect. In this state, data can be received from the application instance and is
forwarded to the hardware instance. In parallel, link quality is verified every 0.5s
(state Check Link Quality). The Roaming state will be reached, if the link quality
becomes bad. Herein, a new master is picked out and a connection between the
slave and the new master will be established. From state Roaming, the roaming
instance can either get connected to a new Master or be disconnected again, if
the roaming list has been exhaustively searched and no master was be found.

Even though the newest version of UML is still under development, we got
the impression that UML is very well suited to model roaming for Bluetooth
devices. The different kinds of diagrams force us to describe the roaming from
different perspectives and on different levels of abstraction. We believe that UML
improved the modeling process and helped to avoid ambiguities in the descrip-
tion.

6 ... to Test with UML 2.0

In this section, we will show how to design tests and modify an existing design
model to obtain a test model. As a case study, we take the UML model for

From Design to Test with UML 2.0 11

roaming with Bluetooth devices which is introduced in Section 5. For the model
modification, we will apply step by step the methodology introduced in Section
3. One focus of this case study is to show that classes and interfaces specified in
the design model can be re-used in the test model.

6.1 Test Preparation

Before augmenting the design model, the focus of the test must be defined, i.e.
which classes should be tested and which interfaces does the tester need in order
to get access to these classes. For our case study, the functionalities of the Slave

BTRoaming layer8 is subject of test.

Hardwaretest component

(SUT)
 System Under Test : Test Component Test Components: with existing classes

HCI

with new class
:

Master1
test component

Master

Coordinator

HCIHCI

Test-Coordinator
test component

Slave
BTRoaming

BT-HWs
Master

SRI

TCI

Test-

Master2SlaveApp

LNI

utiltity part

Location

Server

Location-DataBase

TCI

Slave

test componenttest component

BT-HW
Slave

ApplicationApplication
Master

Application
Master

MRI MRI

BTRoaming
Master

SUT

BTRoaming

Fig. 8. Role Assignment for System Components

Figure 89 presents the test configuration with one slave and two masters.The
classes originate from the BluetoothRoaming package of the design model in Sec-
tion 5: The focus of our tests is the Slave BTRoaming layer. Thus, the Slave Ap-

plication layer is one test component. Other test components are the underlying
Bluetooth Hardware layer and the master components Master1 and Master2.
8 Layer is a term used in the context of communication protocols. In this paper, we

will use it as a synonym to component within an object-oriented system.
9 This diagram is not a UML diagram.

12 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, Holger Pals

On the top of the slave and the masters, we specified a new test component
of class Test-Coordinator. This test component is the main test component which
administrates and instructs the other test components during the test execution.
The coordinator is also responsible for the setting of the test verdicts during test
case execution. The coordinator has access to the utility part Location-DataBase.
This data base embodies the Location Server, which owns the slave roaming lists
and the network structure table. Communication between the Test-Coordinator

and the masters is performed via the Test Coordination Interface (TCI).
This test configuration is very flexible: The Bluetooth Hardware layer used in

a test configuration might either be real Bluetooth (i.e. consisting of the slave’s
Bluetooth hardware SlaveBT-HW and the master’s Bluetooth hardware MasterBT-

HW) or emulated by software. Moreover, different multi party test configurations
can easily be obtained by adding further masters. Even the master test compo-
nent can be regarded as sub-divided into an Master Roaming and Master Application

layer. This allows re-use all the classes specified in the design model. Addition-
ally, in a different test stage, it would be possible to replace more and more
of the emulated test components with real implementations. Consequently, it is
easy to perform integration tests with such a test configuration, as well.

In our case study, the following functionalities of the Slave Roaming layer
should be tested:

– Is the Slave Roaming layer able to choose a new master by looking up in its
roaming list when the connection with its current master gets weak?

– Does the Slave Roaming layer request a connection establishment to the chosen
master?

– Does the Slave Roaming layer wait for a connection confirmation of the master
when the connection has been established?

– Does the Slave Roaming layer send a warning to the environment, when no
master can be found and the roaming list is empty?

These test objectives assume that basic functionalities of the Slave Roaming layer
like data forwarding from the application layer to the hardware layer have already
been tested in a preceding capability test.

6.2 Test Architecture Specification

First of all, a test package for the test model must be defined. Our package
is named BluetoothTest (Figure 9a). The test package imports the classes and
interfaces from the BluetoothRoaming package in Section 5 in order to get access
to the classes to be tested.

In Section 6.1, we have assigned the Slave BTRoaming layer to SUT and other
system components to test components. The test package consists of five test
component classes, one utility part and one test suite class. The test suite class
is called BluetoothSuite. It shows various test attributes, some test functions and
two test cases (Figure 9b).

Test configuration and test control are also specified in the test suite class.
The test configuration (Figure 10a) corresponds with the test configuration in

From Design to Test with UML 2.0 13

HCI LNI

<<testSuite>>

BluetoothSuite

SRI
<<import>>

Roaming
Bluetooth−

<<test component>>

Test−
Coordinator

TCI

LNI

Location
<<utility part>>

DataBase

LNI

<<test component>>

TCI

p_cop_hw

HCI

<<test component>>

LNIHCI
p_mp_s

BluetoothTest

p1[4]

<<test component>>
p_ap

Hardware Master

Application
Slave−

(a) Test Package

- verdict: Verdict

+ RList: list
- threshold: Integer

+ Connect_to_Master()
+ Bad_Link_Quality()
+ Good_Link_Quality()

BluetoothSuite
<<testSuite>>

- TestRoaming_withWarning(): Verdict

- TestRoaming_noWarning(): Verdict
<<testcase>>

<<testcase>>

(b) Test Suite Class

Fig. 9. Test Package & Test Suite Class

<< utility part >>

Location−
Database

m1:

<<test

Master Master Master Master
m4:m3:m2:

component>>
<<test <<test <<test

component>> component>> component>>

<<SUT>>
sr: SlaveRoaming

sa: Slave−
Application

<<test component>>

<<test component>>

co: Test−Coordinator
<<test component>>

p_s p_m p_m p_m p_m

p_hw p_hw p_hw p_hw

p_co p_co p_co p_co

BluetoothSuite
<<testSuite>>

hw: Hardware

p1[4]

(a) Test Configuration

sd

BluetoothSuite
<<testSuite>>

verdict :=

[verdict==pass]

[verdict==fail]

Bluetooth_TestControl

verdict :=ref

ref

TestRoaming_withWarning

TestRoaming_noWarning

(b) Test Control

Fig. 10. Test Configuration & Test Control

Figure 8, except that it consists of one slave and four masters m1–m4. Ports with
interfaces connect the test components and the SUT to each other.

Figure 10b illustrates the test control, indicating the execution order of the
test cases: First, test case TestRoaming noWarning is executed. If the test result is
pass, the second test case TestRoaming withWarning will also be executed. Other-
wise, the test is finished.

6.3 Test Behavior Specification

Our test cases are all derived from the sequence diagrams, state machines and
activity diagrams of the design model presented in Section 5. Only little effort
was necessary for deriving the test case specifications. Some of the test cases
may also be generated automatically.

In Section 6.1, we have listed the test objectives of the case study. As an
example, we will present a test case for the following scenario:

14 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, Holger Pals

After the exchange of two data packages, the link quality between
Slave and its current master m1 becomes bad. The first alternative
master in the roaming list m2 cannot be reached since the link
quality is also weak. Thus, after at most two seconds, a further
master m3 is chosen from the roaming list and the connection is
established successfully.

Figure 11 depicts the test case for scenario above. Test case TestRoaming

NoWarning starts with the activation of the timer T1 of six seconds. T1 is a
guarding timer which is started at the beginning and stopped at the end of a
test case. It assures that the test finishes properly even if e.g. the SUT crashes
and does not respond anymore. In this case, the timeout event is caught by a
default behavior.

The function Connect To Master, which is referenced at the beginning of the
test case establishes a connection between the Slave and Master m1 (Figure 12a):
The connection request (con request) is initiated by the Slave-Application and is
forwarded to the master. The master informs the Test-Coordinator about that ob-
servation. Then, the master accepts the connection (con accept), resulting in a
confirmation sent from the Bluetooth hardware to both the slave and the master.
Thereupon, the master informs the Test-Coordinator about the successful connec-
tion, which allows the Test-Coordinator to build a new roaming list containing the
masters (reference makeList) and to transfer it via the master to the slave us-

datadata

con_request

T2

T1

T2(2s)

{0.5s..}

Coord-Default

con_confirm

con_request

roamingList([m1,m2,m4])

TestRoaming_noWarning():Verdictsd

Application

roamingList([m1,m2,m4])

data

co: Test-sr:Slave

data

<<default>>
Conf_Default

<<validationAction>>

T1(6s)

pass

<<default>>

hw:Hardware

makeList

con_request

roamingList([m1,m2,m6])

Coordinator

con_request

con_confirm(m3)

con_request

sa: Slave-
Roaming

m3: Masterm1: Master m2: Master

con_request

con_confirm

con_accept

Connect_To_Master(m1)

Disconnect
ref

Bad_Link_Quality

Good_Link_Quality

ref

ref

ref

ref

<<test component>><<SUT>> <<test component>><<test component>><<test component>> <<test component>>
<<test component>>

Fig. 11. Test Scenario

From Design to Test with UML 2.0 15

roamingList([M2,M3,M4]) roamingList([M2,M3,M4])

ref
makeList

con_confirm

sd

con_request con_request

Connect_To_Master(master:string)

Application

con_request

Slave-ae:

con_confirm

con_request

co:

con_accept

con_confirm(master)

sr:Slave
Roaming

hw:Hardware master: Master Test-Coordinator
<<test component>> <<test component>><<SUT>> <<test component>><<test component>>

(a) Connect to Master Function

sdGood_Link_Quality

quality(good)

get_link_quality

hw:Hardware
Roaming

sr:Slave
<<SUT>> <<test component>>

quality(bad)

get_link_quality

Bad_Link_Qualitysd

Roaming
sr:Slave hw:Hardware

<<SUT>> <<test component>>

(b) Link Quality Evaluation Functions

Fig. 12. Test Functions

ing the message roamingList([M2,M3,M4]). The entries of the roaming list indicate
that if the connection between slave and its current master gets weak, master m2

should be tried next. If this connection cannot be established, master m3 should
contacted. As a last alternative, m4 should be chosen. If none of the alternative
masters can be connected to, warnings would be sent out.

When the referenced behavior of Connect to Master has finished in Figure 11,
the slave has successfully connected to master m1 and Slave-Application starts
to send data to the master. Additionally, the link quality is checked period-
ically. Checking the link quality is specified in the functions Good Link Quality

and Bad Link Quality in Figure 12b. Herein, Slave Roaming triggers the evaluation
request and receives the result from the hardware.

In the first evaluation of test case TestRoaming noWarning (Figure 11), the
Hardware has to be tuned to report a good link quality. Thus, further data can
be sent. In the second evaluation, the link quality is determined to be bad.
Therefore, a new master is looked up. According to the roaming list, the new
master must be m2. A connection request is expected to be sent to m2 by the
SUT. As soon as it is observed and reported to the Test-Coordinator, a timer T2 of
two seconds is started. This timer assures that when the SUT cannot establish
a connection to a master, the SUT chooses a further master and tries to connect
to it within two seconds. If it is observed that the SUT requests a connection
to the correct master m3, the timer T2 is stopped by the Test-Coordinator. In
this test case, the connection is accepted (con accept) by master m3 and hence
confirmed (con confirm). After the Test-Coordinator noticed the connection to the
correct master, it assembles the new roaming list and sends it via the master
to the slave. In case that no connection confirmation is received, the default

16 Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen, Holger Pals

behavior Conf Default is invoked. Finally, slave and master are disconnected, the
guarding timer T1 is stopped and the verdict of this test case is set to pass.

Besides the expected test behavior of test case TestRoaming NoWarning, default
behaviors are specified to catch the observations which lead to a fail or inconclusive

verdict. The given test case uses two defaults called Coord Default and Conf Default

(Figure 13). In UML Testing Profile, test behaviors can be specified by all UML
behavioral diagrams, including interaction diagrams, state machines and activity
diagrams. Thus, Figure 13 shows how default behaviors can be specified either
as sequence diagrams (Figure 13a and 13b) or as state machines (Figure 13c and
13d).

Coord Default is an instance-specific default applied to the coordinator. It
defines three alternatives. The first two alternatives catch the timeout events of
the timers T1 and T2. In both cases, slave and master will be disconnected and
the verdict is set to fail. After that, the test component terminates itself. The
third alternative catches any other unexpected events. In this case, the verdict
is set to inconclusive and the test behavior returns back to the test event which
triggered the default.

Conf Default is an event-specific default attached to the connection confirma-
tion event. In the Test-Coordinator, this default is invoked if either the connection
confirmation is not sent from the correct master or another message than the
connection confirmation is received. In the first case, the verdict is set to fail

alt

<<default>>
sd Coord_Default

self

T2

T1

*

fail

<<validationAction>>
inconc

<<validationAction>>
fail

<<validationAction>>

Disconnect

Disconnect

<<default>>
sd

alt

Conf_Default

self

<<validationAction>>
fail

<<validationAction>>
inconc

*

con_confirm(*)

(a) Default as Sequence Diagrams

statemachine
<<default>>

Coord_Default

T2/setverdict(fail)
*

*/setverdict(inconc)

T1/setverdict(fail)

*

con_confirm(*)/setverdict(fail)

*/setverdict(inconc)

statemachine
<<default>>

Conf_Default

(b) Default as State Machines

Fig. 13. Test Defaults

From Design to Test with UML 2.0 17

and the test component finishes itself. In the latter case, the verdict is set to
inconclusive and the test returns to main test behavior.

7 Summary and Outlook

In this paper, we have presented a case study of how to use the newly adopted
UML Testing Profile, in which some of the authors were involved. The UML
Testing Profile is a UML profile which allows the specification of black-box tests
based on UML 2.0. We proposed a methodology of how to derive test models
from existing design model. Furthermore, we introduced roaming techniques for
data transmission using Bluetooth hardware devices and designed an appropri-
ate UML model. As a case study for our UML Testing Profile methodology,
we demonstrated its applicability by developing a test model for a Bluetooth
roaming model.

Due to missing tool support for the UML version 2.0, we were not able to
analyze our models automatically. Our future work will include such a validation.
We also plan to investigate the possibilities to generate executable code for both
UML 2.0 design and test models. Experience with earlier versions of UML have
shown that at least code skeletons can be generated automatically from UML
descriptions.

Further study is required to investigate automatic derivation of test models
from design model. Additionally, it would be interesting to assess the possibility
of hardware test specification using UML Testing Profile.

References

1. J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 1998.

2. http://www.u2-partners.org/.
3. UML Testing Profile - Request For Proposal, OMG Document (ad/01-07-08), April

2002.
4. http://www.omg.org/uml.
5. http://www.fokus.fraunhofer.de/u2tp/.
6. I. Schieferdecker, Z. R. Dai, J. Grabowski, and A. Rennoch, “The UML 2.0 Testing

Profile and its Relation to TTCN-3,” Testing of Communicating Systems – 15th
IFIP International Conference, TestCom2003, Sophia Antipolis, France, LNCS
2644, Springer, May 2003.

7. B.Beizer, Black-Box Testing. John Wiley & Sons, Inc, 1995.
8. UML Testing Profile, Draft Adopted Specification at OMG (ptc/03-07-01), July

2003, http://www.omg.org/cgi-bin/doc?ptc/2003-07-01.
9. Specification of the Bluetooth System (version 1.1), Bluetooth Special Interest

Group, http://www.bluetooth.com.
10. http://www.iti.uni-luebeck.de/Research/MUC/EKG/.
11. H. Pals, Z. R. Dai, J. Grabowski, and H. Neukirchen, UML-Based Modeling of

Roaming with Bluetooth Devices, First Hangzhou-Lübeck Conference on Software
Engineering (HL-SE’03), 2003.

12. UML 2.0 Superstructure, Draft Adopted Specification at OMG (ptc/03-07-06),
July 2003.

