

Scientific workflows for different data analysis models

Shahbaz Memon^{1,2}, Helmut Neukirchen¹, Thomas Zwinger³

- 1) University of Iceland, Iceland
- 2) Jülich Supercomputing Centre, Germany
- 3) CSC, Finland

Outline

Two case studies:

- Glacier Modeling
 - Already presented in detail last year
 - Based on application from Dorotheé Vallot
- Parallel classification of remotely sensed images

Ice flow: Movement of the ice

- Deformation of ice
 - Fracture (crevasses)
 - Internal deformation or creep
- Basal sliding

Photo: D. Vallot

Calving process

Calving occurs when tensile stresses are large enough to propagate fractures through the ice

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES ember, 2017

Can be modelled as a discrete process

Dorothée Vallot

Glacier Modeling Workflow

UNIVERSITY OF ICELAND SCHOOL OF ENGINEERING AND NATURAL SCIENCES

Workflow Enhancements

Workflow Realization in UNICORE

Summary: Glacier Modeling

- UNICORE deployed on CSC's Sisu and Taito Cluster
 - Thanks to CSC Admins and Thomas Zwinger
- Applications Involved: ElmerI
- Current workflow instance works with small data set
- Results:
 - EGU 2017: Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system
 - Journal/Conference: Complete use case with evaluation and usability analysis.

Case Study: Image Classification

- Indian Pines dataset, multi-spectral dataset
- Acquired in 1992 through the AVIRIS sensor over an agricultural site composed of fields and regular geometry
- Land-cover classification problem consist of similar spectral classes and mixed pixels
- Each scene is preprocessed and generates 30 features with 1417x617, spatial resolution of 20m

Method: Support Vector Machines(SVM)

- SVM is a robust method to discover linear and non-linear decision boundaries with less amount of data $K(x_i, x_{i'}) = \exp(-\gamma \sum_{i=1}^{p} (x_{ij} - x_{i'j})^2)$
- Used in many remote sensing applications

Common Analysis Steps

Analysis: Experiment setup

Summary: Multi-spectral Classification

- UNICORE deployment on Jülich's JURECA Cluster
- Command line client implementation available for cross validation and model selection
- Results and next steps:
 - IGARSS 17: Facilitating Efficient Data Analysis of Remotely Sensed Images Using Standards-based Parameter Sweep Models (Done)
 - Outlook: Automate the whole scenario including the data management, preprocessing, testing and accuracy tasks. (In Progress)

