

Survey and Performance
Evaluation of DBSCAN Spatial
Clustering Implementations for
Big Data and High-Performance

Computing Paradigms

Helmut Neukirchen
helmut@hi.is

November 8, 2016

Report nr. VHI-01-2016, Reykjavík 2016

Helmut Neukirchen. Survey and Performance of DBSCAN Implementations for Big Data and HPC
Paradigms,
Engineering Research Institute, University of Iceland, Technical report VHI-01-2016, November 2016

The results or opinions presented in this report are the responsibility of the author. They should not
be interpreted as representing the position of the Engineering Research Institute or the University of
Iceland.

c© Engineering Research Institute, University of Iceland, and the author(s)

Engineering Research Institute, University of Iceland, Hjarðarhagi 2-6, IS-107 Reykjavík, Iceland

Abstract

Big data is often mined using clustering algorithms. Density-Based Spatial Clustering of
Applications with Noise (DBSCAN) is a popular spatial clustering algorithm. However, it is
computationally expensive and thus for clustering big data, parallel processing is required.
The two prevalent paradigms for parallel processing are High-Performance Computing (HPC)
based on Message Passing Interface (MPI) or Open Multi-Processing (OpenMP) and the newer
big data frameworks such as Apache Spark or Hadoop. This report surveys for these two
different paradigms publicly available implementations that aim at parallelizing DBSCAN
and compares their performance. As a result, it is found that the big data implementations
are not yet mature and in particular for skewed data, the implementation’s decomposition
of the input data into parallel tasks has a huge influence on the performance in terms of
running time.

Contents

1 Introduction . 2
2 Foundations . 3
2.1 DBSCAN . 3
2.2 HPC . 4
2.3 Big Data . 4
2.4 Convergence of HPC and Big Data . 5
3 Related Work . 6
4 Survey of Parallel DBSCAN Implementations 7
4.1 HPC DBSCAN Implementations . 7
4.2 Spark DBSCAN Implementations . 8

4.2.1 Common features and limitations of the Spark Implementations 8
4.3 MapReduce DBSCAN Implementations . 9
5 Evaluation of Parallel DBSCAN Implementations 10
5.1 Hardware and Software Configuration . 10
5.2 Input Data . 10
5.3 DBSCAN Implementation Versions . 11
5.4 Measurements . 11

5.4.1 Preparatory Measurements . 12
5.4.2 Run-time Measurements on Small Data Set 13
5.4.3 Run-time Measurements on Big Data Set 14

5.5 Discussion of Results . 15
6 Some Side Notes on Good Academic Practise 16
7 Summary and Outlook . 17
8 Acknowledgment . 18

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

1 Introduction

Spatial information contained in big data can be turned into value by detecting spatial
clusters. For example, areas of interest or popular routes can be determined by this means
from geo-tagged data occurring in social media networks. This has many applications
ranging from commercial settings such as advertising to administrative settings such as
traffic planning or disaster response [14].

A popular spatial clustering algorithm is Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [18]. Unfortunately, DBSCAN is is computationally expensive and
thus for clustering big data, parallel processing is required. The two main general purpose
paradigms for parallel processing are on the one hand High-Performance Computing (HPC)
based on Message Passing Interface (MPI) or Open Multi-Processing (OpenMP) and on the other
hand the newer big data frameworks such as the MapReduce-based Apache Hadoop or the
Resilient Distributed Dataset (RDD)-based Apache Spark. However, the DBSCAN algorithm
has been defined as a serial, non-parallel algorithm. Therefor, several variants of DBSCAN
have been suggested to parallelize its execution. This paper compares the performance of
different publicly available implementations that aim at parallelizing DBSCAN for the HPC
and big data paradigms.

The outline of this paper is as follows: subsequent to this introduction, we provide
foundations on DBSCAN, HPC and big data. Afterwards, in Section 3, we describe as
related work other comparison of algorithms running on HPC and big data platforms. In
Section 4, we survey existing DBSCAN implementations. Those implementations that were
publicly available are evaluated with respect to their running time in Section 5. Based on the
experience of trying to evaluate all the implementations described in scientific publications,
some side nodes on good academic practise are made in Section 6, before we conclude with
a summary and an outlook in Section 7.

2 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

2 Foundations

2.1 DBSCAN

The clustering algorithm Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [18] has the nice property that the number of the clusters need not to be known
in advance, but are rather automatically determined, that it is almost independent from the
shape of the clusters, and that it can deal with and filter out noise. Basically, the underlying
idea is that for each data point, the neighbourhood within a given eps radius has to contain
at least a minpts points to form a cluster, otherwise it is considered as noise.

In the simplest implementation, finding all points which are in the eps neighbourhood
of the currently considered point, requires to check all n − 1 points of the input data, doing
this for each of the n input points leads to a complexity of O(n2). Using spatially sorted data
structures for the neighbourhood search, such as R-trees [23], R*-trees [8], or kd-trees [9],
reduces the overall complexity to O(n log n). The standard algorithms to populate such
spatially sorted data structures cannot run in parallel and require in particular to have the
entire input data available in non-distributed memory.

Even if the problem of having a distributed, parallel-processing variant of populating
and using a spatially sorted data structure is solved (in order to bring the overall complexity
down to O(n log n)), there are further obstacles in parallelizing DBSCAN so that it scales
optimally.

But at least, the actual clustering can be easily parallelized: typically, all points that
belong to the same partition (=a rectangle in case of 2 dimensional data, a cube in case of
3D data, or a hypercube for n≥3 dimensions) can be processed by one thread independently
from other threads that process the remaining partitions of points. Only at the border of
each rectangle/cube/hypercube, points from direct neighbour rectangles/cubes/hypercubes
need to be considered up to a distance of eps. For this, the standard approach of ghost or
halo regions can be applied, meaning that these points from a neighbour partition need to be
accessible as well by the current thread (in case of distributed memory, this requires to copy
them into the memory of the respective thread). In a final step, those clusters determined
locally in each partition which form a bigger cluster spanning multiple partitions need to be
merged.

To achieve a maximum speed-up, not only an efficient spatially sorted data structure,
communication overhead (e.g. for halo regions or finally merging locally obtained clusters),
but also the size of the partitions is crucial: the input domain needs to be decomposed so
that each thread or processor core get an equal share of the work. The simple approach of
dividing the input domain into spatially equally sized chunks (for example as many chunks
as processor cores are available) yields imbalanced workloads for the different cores if the
input data is skewed: some partitions may then be almost empty, others very crowded.
For heavily skewed data, the spatial size of each partition needs to be rather adjusted, for
example in a way that each partition contains an equal number of points. If ghost/halo
regions are used, then also the number of points in these regions need to be considered.

As shown, parallelizing DBSCAN in a scalable way beyond a trivial number of nodes
or problems size is a challenge. For example, PDBSCAN [38] is a parallelized DBSCAN,
however it involves a central master node to aggregate intermediate results which can be a
bottleneck with respect to scalability.

3 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

2.2 HPC

High-Performance Computing (HPC) is tailored to typically CPU-bound computationally ex-
pensive jobs. Hence, special and rather expensive hardware, e.g. compute nodes containing
fast CPUs including many cores and large amounts of RAM, very fast interconnects (e.g.
InfiniBand) for communication between nodes, and centralized Storage-Area Network (SAN)
with high bandwith due to a huge Redundant Array of Independent Disks (RAID) and fast
attachment of them to the nodes.

To make use of the many cores per CPU, typically shared-memory multi-threading based
on Open Multi-Processing (OpenMP) [15] is applied. To make use of the many nodes con-
nected via the interconnects, an implementation of the Message Passing Interface (MPI) [31]
is used which supports low-level 1:1 communication and also group communication. The
underlying programming model is very low-level, the domain decomposition of the in-
put data, all parallel processing, synchronisation, and communication has to be explicitly
programmed using OpenMP and MPI. Typically rather low-level, but fast programming
languages such as C, C++ and Fortran are used in the HPC domain. In addition to message
passing, MPI supports parallel I/O to read different file sections from the SAN in parallel into
the different nodes. To this aim, parallel file systems such as Lustre [32] or the General Parallel
File System (GPFS) [27] make efficient use of the underlying RAID-like SAN to provide a high
aggregated storage bandwidth. Typically, binary file formats such as netCDF or Hierarchical
Data Format (HDF) [19] are used for storing input and output data in a structured way. They
come with access libraries that are tailored to MPI parallel I/O.

While the low-level approach allows fast running implementations, their implementation
takes considerable time. Furthermore, no fault tolerance is included: a single process failure
on one of the many cores will cause the whole HPC job to fail which then needs to be restarted
from the beginning. However, due to the server-grade hardware, hardware failures are
considered to occur seldom (but still, they occur in practise).

2.3 Big Data

The big data paradigm is tailored to process huge amounts of data, however the actual
computations to be performed on this data are often not that computationally intensive.
Hence, cheap commodity hardware is sufficient for most applications. Being rather I/O-
bound than CPU-bound, the focus is on High-Throughput Computing (HTC). To achieve
high-throughput, locality of data storage is exploited by using distributed file systems storing
locally on each node a part of the data. The big data approach aims at doing computations on
those nodes where the data is locally available. By this means, slow network communication
can be minimised. (Which is crucial, because rather slow Ethernet is used in comparison to
the fast interconnects in HPC.)

An example distributed file system is the Hadoop Distributed File System (HDFS), intro-
duced with one of the first open-source big data frameworks, Apache Hadoop [6] which is
based on the MapReduce paradigm [17]. As it is intended for huge amounts of data, the typ-
ical block size is 64 MB or 128 MB. Hadoop has the disadvantage that only the MapReduce
paradigm is supported which restricts the possible class of parallel algorithms and in partic-
ular may lead to unnecessarily storing intermediate data on disk instead of allowing to keep
it in fast RAM. This weakness is overcome by Apache Spark [7] which is based on Resilient
Distributed Datasets (RDDs) [39] which are able to store a whole data set in RAM distributed
in partitions over the nodes of a cluster. A new RDD can be obtained by applying in parallel
on all partitions transformations to an input RDD. To achieve fault tolerance (Spark executor

4 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

node failures are more severe as in Hadoop, because data is stored in RAM only instead
of persistent disk storage), an RDD can be reconstructed by re-playing transformations on
those RDDs (or respectively those partitions of them) that survived a failure. The initial
RDD is obtained by reads from HDFS. While RDDs are kept in RAM, required data may not
be available in the local RDD partition of a node. In this case, it is necessary to re-distribute
data between nodes. Such shuffle operations are expensive, because slow network transfers
are needed for them. Typically, textual file formats (such as Comma-Separated Values (CSV))
are used that can be easily split to form the partitions on the different nodes.

High-level, but (in comparison to C/C++ or Fortran) slower languages such as Java or
the even more high-level Scala or Python are used in big data frameworks. Spark has
over Python the advantage that it is compiled into Java bytecode and is thus natively
executed by the Java Virtual Machine (JVM) used by Hadoop and Spark in contrast to Python
implementations that may suffer from JVM/Python frictions. While the code to be executed
is written as a serial code, the big data frameworks take behind the scenes care that each
node applies in parallel the same code to the different partitions of the data. Even though
Spark has many advantages compared to other distributed computation frameworks, the
programmers still need to spend considerable time on implementing algorithms to make
their parallelization as efficient as possible.

Because commodity hardware is used which is more error prone than HPC server-grade
hardware, big data approaches need to anticipate failures as the norm and have thus built-in
fault tolerance, such as redundant data storage or restarting failed jobs.

2.4 Convergence of HPC and Big Data

Convergence of HPC and big data approaches is taking place: typically either in form of
High-Performance Data Analysis (HPDA), meaning that HPC is used in domains that used
to be the realm of big data platforms [35], or big data platforms are used in the realm
of HPC [20], or big data platforms are deployed at run-time on HPC clusters, however,
sacrificing data locality aware scheduling [28]. In this paper, we investigate how mature this
convergence is by comparing DBSCAN clustering implementations available for HPC and
for big data platforms.

5 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

3 Related Work

HPC and big data data implementations for the same algorithms have been studied before.
Jha et al. [28] compare these two parallel processing paradigms in general and introduce
“Big Data Ogres” which refer to different computing problem areas with clustering being
one of them. In particular, they evaluate and compare the performance of k-means clus-
tering [30] implementations for MPI-based HPC, for MapReduce-based big data platforms
such as Hadoop and HARP (which introduces MPI-like operations into Hadoop), and for
the RDD-based Spark big data platform. In their evaluation, the considered HPC/MPI k-
means implementation outperforms the other more big data-related implementation with
the implementation based on HARP being second fastest and the implementation for Spark
ranking third.

The influence of data storage locality as exploited by Spark and other big data platforms
compared to centralized HPC SAN storage has been investigated by Wang et al. [37]. They
use data intensive Grep search and compute intensive logistic regression as case study and
come to the conclusion that even with a fast 47 GB/s bandwith centralized Lustre SAN, data
locality matters for Grep and thus accesses to local SSDs are faster. However, for the logistic
regression, locality of I/O does not matter.

6 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

4 Survey of Parallel DBSCAN Implementations

The following subsections contain a survey of the considered DBSCAN implementations.
To be able to compare their run-time performance on the same hardware and using the same
input, only open-source implementations have been considered. Where documented by
the respective authors, details concerning complexity and the partitioning scheme used for
domain decomposition, are described.

For comparison, we also used also ELKI 0.7.1 [36], an Environment for DeveLoping KDD-
Applications supported by Index-Structures. ELKI is an optimised serial open-source DBSCAN
implementation in Java which employs R*-trees to achieve O(n log n) performance. By
default, ELKI reads space- or comma-separated values and it supports arbitrary dimensions
of the input data.

4.1 HPC DBSCAN Implementations

A couple of parallel DBSCAN implementations for HPC platforms exist (as, for example,
listed by Patwaryat et al. [34] or Götz et al. [22]). However, to our knowledge, only for two of
them, the source is available: PDSDBSCAN and HPDBSCAN. In the following, we therefore
restrict to these two. Both support arbitrary input data dimensions.

PDSDBSCAN by Patwary et al. [34] (C++ source code available on request from the
PDSDBSCAN first author [33]) makes use of parallelization either based on shared memory
using OpenMP or based on distributed memory using MPI. For their OpenMP variant, the
the input data needs to fits into the available RAM; for the MPI variant, a pre-processing
step is required to partition the input data onto the distributed memory. Details of this
pre-processing step are not documented as the authors do not consider this step as part of
their algorithm and thus it is neither parallelized nor taken into account when they measure
their running times. The implementation reads the input data via the netCDF I/O library.

HPDBSCAN by Götz et al. [22] (C++ source code available from Bitbucket repository [21])
makes use of parallelization based on shared memory and/or distributed memory: besides
a pure OpenMP and pure MPI mode, also a hybrid mode is supported. This is practically
relevant, because an HPC cluster is a combination of both memory types (each node has
RAM shared by multiple cores of the same node, but RAM is not shared between the many
distributed nodes) and thus, a hybrid mode is most promising to achieve high performance.
For the domain decomposition and to obtain a spatially sorted data structure with O(log n)
access complexity, the arbitrary ordered input data is first indexed in a parallel way and
then re-distributed so that each parallel processor has points in the local memory which
belong to the same spatial partition. For load-balancing, these partitions are sized using
a cost function that considers the number of comparisons by multiplying the number of
points in a partition with the number of points in the cell neighbourhood (=number of pairs
for which the distance function needs to be calculated). The command line version of the
implementation reads the input data via the HDF I/O library.

7 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

4.2 Spark DBSCAN Implementations

Even though our search for Apache Spark big data implementations of DBSCAN1 was re-
stricted to JVM-based Java or Scala2 candidates, we found several parallel open-source3

implementations of DBSCAN: Spark DBSCAN, RDD-DBSCAN, Spark_DBSCAN, and DB-
SCAN On Spark. They are described in the following.

Spark DBSCAN by Litouka (source code via GitHub repository [29]) is declared as
experimental and being not well optimised. For the domain decomposition to partition for
parallel processing, the data set is considered initially as a large box full of points. This box
is then along its longest dimension split into two parts containing approximately the same
number of points. Each of these boxes is then split again. This process is repeated until the
number of points in a box becomes less than or equal to a threshold, or a maximum number
of levels is reached, or the shortest side of a box becomes smaller than 2 eps [29]. Each such a
box becomes a record of an RDD which can be processed in parallel, thus yielding an overall
time complexity of O(m2) with m being the number of points per box [2].

RDD-DBSCAN by Cordova and Moh [13] (source code via GitHub repository [12] which
also points to minor forks). The authors state that it is loosely based on MR-DBSCAN [25].
Just as the above Spark DBSCAN by Litouka, the data space is split into boxes that contain
roughly the same amount of data points until the number of points in a box becomes less
than a threshold or the shortest side of a box becomes smaller than 2 eps. R-trees are used to
achieve an overall O(n log n) complexity [13].

Spark_DBSCAN by GitHub user “aizook” (source code via GitHub repository [1]) is a
very simple implementation (just 98 lines of Scala code) and was not considered any further,
because of its complexity being O(n2) [2].

DBSCAN On Spark by Raad (source code via GitHub repository [4]) uses for domain
decomposition a fixed grid independent from how many points are contained in each cell of
the resulting “fishnet” grid. Furthermore, to reduce the complexity, no Euclidian distance
function is used (= a circle with 2 eps diameter), but the fishnet cells are rather used as
a square box (with 2 eps edge length) to decide concerning neighbourhood (see function
findNeighbors in [4]). So, while it is called “DBSCAN On Spark” it implements only an
approximation of the DBSCAN algorithm and does in fact return significantly differing
(=worse) clustering results.

4.2.1 Common features and limitations of the Spark Implementations

All the considered implementations of DBSCAN for big data platforms assume the data to
be in CSV (or space-separated) format.

All the Apache Spark DBSCAN implementations (except for the closed-source DBSCAN
by Han et al. [24]) work only on 2D data: On the one hand, the partitioning schemes used

1Remarkably, the machine learning library MLlib which is a part of Apache Spark does not contain DBSCAN
implementations.

2Note that also purely serial Scala implementations of DBSCAN are available, for example GSBSCAN from the
Nak machine learning library [3]. However, these obviously make not use of Apache Spark parallel processing.
But still, they can be used from within Apache Spark code to call these implementations in parallel, however each
does then cluster disjoint, unrelated data points [11].

3There is another promising DBSCAN implementation for Spark by Han et al. [24]. However, it is not available as
open-source. A kd-tree is used to obtain O(n log n) complexity. Concerning the partitioning, the authors state “We
did not partition data points based on the neighborhood relationship in our work and that might cause workload
to be unbalanced. So, in the future, we will consider partitioning the input data points before they are assigned
to executors.” [24] While the first author sent the binary code on request, the execution on our Spark cluster failed
with java.lang.ArrayIndexOutOfBoundsException. Due to the lack of source code, it was not possible to fix this
issue in order to evaluate that implementation.

8 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

for decomposition are based on rectangles instead of higher-dimensional hyper-cubes. On
the other hand, for calculating the distance between points, most implementations use a
hard-coded 2D-only implementation of calculating the Euclidian distance4.

4.3 MapReduce DBSCAN Implementations

For further comparison, it would have been interesting to evaluate MapReduce-based
DBSCAN implementations for the Apache Hadoop platform and candidates found
to be worthwhile (because they claim to be able to deal with skewed data) were
MR-DBSCAN [26, 25] by He et al. and DBSCAN-MR [16] by Dai and Lin. However, none of
these implementations were available as open-source and e-mail requests to the respective
first authors to provide their implementations either as source code or as binary were not
answered. Hence, it is impossible to validate the performance claims made by these authors.

4Note that spheric distances of longitude/latitude points should in general not be calculated using Euclidian
distance in the plane. However, as long as these points are sufficiently close together, clustering based on the
simpler and faster to calculate Euclidian distance is considered as appropriate.

9 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

5 Evaluation of Parallel DBSCAN Implementations

Often, comparison between HPC and big data implementations are difficult as the imple-
mentations run typically on different cluster hardware (HPC hardware versus commodity
hardware) or cannot exploit underlying assumptions (such as missing local data storage
when deploying big data frameworks at run-time on HPC clusters using a SAN).

5.1 Hardware and Software Configuration

In this paper, the same hardware is used for HPC and Spark runs: the cluster JUDGE at
Jülich Supercomputing Centre. JUDGE was formely used for HPC and has been turned into
a big data cluster. It consists of IBM System x iDataPlex dx360 M3 compute nodes each
comprising two Intel Xeon X5650 (Westmere) 6-core processors running at 2.66 GHz. For
the big data evaluation, we were able to use 39 executor nodes, each having 12 cores or 24
virtual cores with hyper-threading enabled (=936 virtual cores) and 42 GB of usable RAM
per node and local hard disk.

In the HPC configuration, a network-attached GPFS storage system, called JUelich STor-
age (JUST) cluster was used to access data (measured peak performance of 160 GB/s). The
big data configuration relies on local storage provided on each node by a Western Digital
WD2502ABYS-23B7A hard disk (with peak performance of 222.9 MB/s per disk, correspond-
ing to 8.7 GB/s total bandwidth if all 39 nodes read their local disk in parallel). 200 GB on
each disk were dedicated to HDFS using a replication factor of 2 and 128 MB HDFS block
size.

The software setup in the HPC configuration was SUSE Linux SLES 11 with kernel version
2.6.32.59-0.7. The MPI distribution was MPICH2 in version 1.2.1p1. For accessing HDF5
files, the HDF group’s reference implementation version 1.8.14 was used. The compiler was
gcc 4.9.2 using optimisation level O3.

The big data software configuration was deployed using the Cloudera CDH 5.8.0 dis-
tribution providing Apache Spark version 1.6.0 and Apache Hadoop (including HDFS and
YARN which was used as resource manager) version 2.6.0 running on a 64-Bit Java 1.7.0_67
VM. The operating system was CentOS Linux release 7.2.1511.

5.2 Input Data

Instead of using artificial data, a real data set containing skewed data was used for evaluating
the DBSCAN implementations: geo-tagged tweets from a rectangle around the United King-
dom and Ireland (including a corner of France) in the first week of June 2014. The data was
obtained by Junjun Yin from the National Center for Supercomputing Application (NCSA)
using the Twitter streaming API. This data set contains 3 704 351 longitude/latitude points
and is available at the scientific data storage and sharing platform B2SHARE [10]. There,
the data is contained in file twitterSmall.h5.h5. A bigger Twitter data set twitter.h5.h5
from the same B2SHARE location covers whole of June 2014 containing of 16 602 137 data
points, some of them are bogus artefacts though – still we used it to check whether imple-
mentations are able to cope with bigger data sets; a 3D point cloud for the city of Bremen
is also provided there, however it was not usable for benchmarking the surveyed DBSCAN
implementations which typically support only 2D data.

10 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

Table 5.1: Size of the Used Twitter Data Sets
Data points HDF5 size CSV size SSV with Ids

Twitter Small 3 704 351 57 MB 67 MB 88 MB
Twitter Big 16 602 137 254 MB 289 MB 390 MB

Table 5.2: Used Open Source Repository Versions
Implementation Repository Version date
HPDBSCAN bitbucket.org/markus.goetz/hpdbscan 2015-09-10
Spark DBSCAN github.com/alitouka/spark_dbscan 22 Feb 2015
RDD DBSCAN github.com/irvingc/dbscan-on-spark 14 Jun 2016
DBSCAN on Spark github.com/mraad/dbscan-spark 30 Jan 2016

The original file of the small Twitter data set is in HDF5 format and 57 MB in size. To be
readable by ELKI and the Spark DBSCAN implementations, it has been converted using the
h5dump tool (available from the HDF group) into a 67 MB CSV version and into an 88 MB
space-separated version (SSV) that contains in the first column an increasing integer number
as point identifier (expected by some of the evaluated DBSCAN implementations). The size
of these two data sets is summarised in Table 5.1.

For all runs, eps = 0.01 and minpts = 40 were used as parameters of DBSCAN. All
further command line parameters can be found at http://uni.hi.is/helmut/2016/08/
17/dbscan-evaluation.

5.3 DBSCAN Implementation Versions

The dates of the used DBSCAN implementation source code versions and their repository
is provided in Table 5.2.

Note that by default, Spark makes each HDFS block of the input file an RDD partition.
With the above file sizes of the small Twitter data set being lower than the used HDFS block
size of 128 MB, this means that the initial RDD would contain just a single partition located
on the node storing the corresponding HDFS block. In this case, no parallelism would be
used to process the initial RDD. Therefore, if the Spark DBSCAN implementations did not
anyway allow to specify the number of partitions to be used, the implementations were
changed so that it is possible to specify the number of partitions to be used for the initial file
read. This means, that non-local reads will occur, however as the overall processing time
is much bigger than the time needed by a non-local read, the overhead of these non-local
reads is negligible.

5.4 Measurements

Comparing the C++ PDSDBSCAN and HPDBSCAN implementations to the JVM-based
DBSCAN implementations for Spark is somewhat comparing apples and oranges. Hence,
we used as a further comparison a Java implementation, the pure serial ELKI with
-db.index "tree.metrical.covertree. SimplifiedCoverTree$Factory" spatial index-
ing option running just on one of the cluster nodes. The times were measured using the
POSIX command time.

11 of 21 November 8, 2016

bitbucket.org/markus.goetz/hpdbscan
github.com/alitouka/spark_dbscan
github.com/irvingc/dbscan-on-spark
github.com/mraad/dbscan-spark
http://uni.hi.is/helmut/2016/08/17/dbscan-evaluation
http://uni.hi.is/helmut/2016/08/17/dbscan-evaluation

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

Table 5.3: Deviation of Run-times
Run 1. 2. 3. 4.

Time (s) 653 546 553 560

As usual in Hadoop and Spark, the Spark DBSCAN implementations create the output
in parallel resulting in one file per parallel acRDD output partition. If a single output file is
intended, it can be merged afterwards, however this time is not included in the measured
run-time. The reported times were taken from the “Elapsed” line of the application’s entry
in the Spark web user interface for the completed run.

For the number of experiments that we did, we could not afford to re-run all of them
multiple times to obtain averages or medians. However, for one scenario (RDD-DBSCAN,
233 executors, each using 4 cores with 912 initial partitions running on the small Twitter data
set), we repeated execution four times. The observed run-times are shown in Table 5.3. For
these 9–10 minute jobs, deviations of up to almost 2 minutes occurred. The fact that the first
run was slower than the subsequent runs might be attributed to caching of the input file. In
all of our experiments, we had exclusive use of the assigned cores.

5.4.1 Preparatory Measurements

In addition to the DBSCAN parameters eps and minpts, the parallel Spark implementations
are influenced by a couple of parallelism parameters which were determined first.

Spark uses the concepts of executors with a certain numbers of threads/cores per executor
process. Some sample measurements using a number of threads per executor ranging from 3
to 22 have been performed and the results ranging from 626 seconds to 775 seconds are within
the above deviations, hence the influence of threads per executor is not considered significant.
(Most of the following measurements have been made with 8 threads per executor – details
can be found at http://uni.hi.is/helmut/2016/08/17/dbscan-evaluation.)

Parallelism in Spark is influenced by the number of partitions into which an RDD is
divided. Therefore, measurements with varying initial partition sizes have been made (in
subsequent RDD transformations, the number of partitions may however change depending
on the DBSCAN implementations). Measurement for RDD-DBSCAN running on the small
Twitter data set on the 932 core cluster (not all cores were assigned to executors to leave
cores available for cluster management) have been made for a number of initial number of
input partitions ranging from 28 to 912. The observed run-times were between 622 seconds
and 736 seconds which are all within the above deviation range. Hence, these experiments
do not give observable evidence of an optimal number of input partitions. However, in the
remainder, it is assumed that making use of the available cores already from the beginning
is optimal and hence 912 was used as the initial number of input partitions.

After the input data has been read, the DBSCAN implementations aim at distributing the
read data points based on spatial locality in order to parallelize the subsequent clustering
step: as described in section 4.2, most Spark DBSCAN implementations aim at recursively
decomposing the input domain into spatial rectangles that contain approximately an equal
number of data points and they stop doing so as soon as a rectangle contains only a certain
number of points; however, a rectangle becomes never smaller than 2 eps edge length.
Assuming that the subsequent clustering steps are also based on 912 partitions, the 3 704 351
points of the small Twitter data set divided by 912 partitions yield 4061 points per partition
as optimal rectangle size. However, due to the fact a rectangle becomes never smaller than
2 eps edge length, some rectangles of that size still contain more points (e.g. in the dense-

12 of 21 November 8, 2016

http://uni.hi.is/helmut/2016/08/17/dbscan-evaluation

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

Table 5.4: Influence of number of points used in domain decomposition
No. of points threshold 4 061 9 000 20 000 25 000 50 000

Times (s) 1 157 823 867 675 846

populated London area, some of these 2 eps rectangle contain up to 25 000 data points) and
thus, the domain decomposition algorithm terminates with some rectangles containing more
than that number of points.

Experiments have been made with a couple of different number of points used as thresh-
old for the domain decomposition. According to the results are shown in Table 5.4, a
threshold of a minimum of 25 000 data points per rectangle promises fastest execution. As
this number is also the lowest number that avoids the domain decomposition to terminate
splitting rectangles because of reaching the 2 eps edge length limit, a natural explanation
would be that all rectangles contain an approximately equal number of points thus lead-
ing to best load balancing. However, this contradicts in fact later findings discussed in
Section 5.5.

5.4.2 Run-time Measurements on Small Data Set

After these algorithm parameters have been determined based on these preparatory prepara-
tory experiments, a comparison of the run-times of the different implementations was made
when clustering the small Twitter data set.

Table 5.5 shows results using a lower number of cores in parallel. The C++ implemen-
tation HPDBSCAN (running in MPI only mode) performs best in all cases and scales well:
even with just one core, only 114 seconds are needed to cluster the small Twitter data set.
Second in terms of run-time is C++ PDSDBSCAN (MPI variant), however, the scalability
beyond 8 cores is already limited.

Even the Java ELKI which is optimised for a serial execution is much slower than the
C++ implementations. The implementations for Spark are even more slower (for all of them,
912 initial input partitions were used). For RDD-DBSCAN, 25 000 data points were used as
domain decomposition threshold. (Spark DBSCAN was not measured using a low number
of cores, because already with a high number of cores it was very slow.) When running
on many cores, the Spark implementations beat ELKI but they are still by one (DBSCAN
on Spark) or two (RDD-DBSCAN) magnitudes slower than HPDBSCAN and do not scale
as well. While DBSCAN on Spark is faster than RDD-DBSCAN, it does only implement a
simple approximation of DBSCAN and thus delivers different clusters than DBSCAN and
should therefore not be considered as DBSCAN.

Table 5.6 shows results using a higher number of cores. (No measurements of any of the
two DBSCAN HPC implementations on the small Twitter data set have been made, as we
can already see from Table 5.5 that using a higher number of cores does not give any gains on
this small data set – measurements with many cores for HPDBSCAN running on the bigger
Twitter data set are presented later). For Spark DBSCAN, an initial experiment has been
made using 928 cores (and 25 000 data points as domain decomposition threshold just as for
RDD-DBSCAN), but as it was rather slow, so no further experiments have been made for
this implementation. For RDD-DBSCAN, no real speed-up can be observed when scaling
the number of cores (run-times are more or less independent from the number of used cores
and constant when taking into account the measurement deviations to be expected). The
same applies to the DBSCAN on Spark implementation.

As pointed out in Section 4.3, it would have been interesting to compare the running

13 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

Table 5.5: Run-time (in Seconds) vs. Number of Cores
Number of cores 1 2 4 8 16 32

HPDBSCAN MPI 114 59 30 16 8 6
PDSDBSCAN MPI 288 162 106 90 85 88

ELKI 997 – – – – –
RDD-DBSCAN 7 311 3 521 1 994 1 219 889 832

DBSCAN on Spark(*) 1 105 574 330 174 150 147
(*) Does only implement an approximation of the DBSCAN algorithm.

Table 5.6: Run-time (in Seconds) vs. Number of Cores
Number of cores 58 116 232 464 928
Spark DBSCAN – – – – 2 406
RDD-DBSCAN 622 707 663 624 675

DBSCAN on Spark(*) 169 167 173 183 208
(*) Does only implement an approximation of the DBSCAN algorithm.

time of MapReduce-based implementations using the same data set and hardware. Han et
al. [24] who tried as well without success to get the implementations of MR-DBSCAN and
DBSCAN-MR, developed for comparison reasons their own MapReduce-based implemen-
tation and observed a 9 to 16 times slower performance of their MapReduce-based DBSCAN
implementation in comparison to their implementation for Spark.

5.4.3 Run-time Measurements on Big Data Set

While the previous measurements were made using the smaller Twitter data set, also the
bigger one containing 16 602 137 points was used in experiments. While HPDBSCAN can
easily handle it, the Spark implementations have problems with this 289 MB CSV file.

When running any of the Spark DBSCAN implementations while making use of all
available cores of our cluster, we experienced out-of-memory exceptions1. Even though
each node in our cluster has 42 GB RAM, this memory is shared by 24 virtual cores of
that node. Hence, the number of cores used on each node had to be restricted using the
�executor-cores parameter, thus reducing the parallelism, but leaving each thread more
RAM (which was adjusted using the �executor-memory parameter).

The results for the big Twitter data set are provided in Table 5.7. HPDBSCAN (in the
hybrid version using OpenMP within each node and MPI between nodes) scales well.
Spark DBSCAN failed throwing the exception java.lang.Exception: Box for point
Point at (51.382, -2.3846); id = 6618196; box = 706; cluster = -2; neighbors
= 0 was not found. DBSCAN on Spark did not crash, but returned completely wrong
clusters (it anyway does not cluster according to the original DBSCAN). RDD-DBSCAN
took almost one and a half hour. While DBSCAN on Spark finishes faster, it delivered
completely wrong clustering results. Due to the hopelessly long run-times of the DBSCAN
implementations for Spark already with the maximum number of cores, we did not perform
measurements with a lower number of cores.

1Despite these exceptions, we did only encounter once during all measurements a re-submissions of a failed
Spark tasks – in this case, we did re-run the job to obtain a comparable measurement.

14 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

Table 5.7: Run-time (in Seconds) on Big Twitter Data Set
Number of cores 1 384 768 928

HPBDBSCAN hybrid 2 079 10 8 –
ELKI 15 362 – – –

Spark DBSCAN – – – Exception
RDD-DBSCAN – – – 5 335

DBSCAN on Spark(*) – – – 1 491
(*) Does only implement an approximation the DBSCAN algorithm.

5.5 Discussion of Results

Big data approaches aim at avoiding “expensive” network transfer of initial input data
by moving computation where the data is available on local storage. In contrast, in HPC
systems, the initial input data is not available locally, but via an external SAN storage system.
As DBSCAN is not that I/O bound, but rather CPU bound, the I/O speed and file formats
do not matter as much as the used programming languages and clever implementations in
particular with respect to the domain decomposition for parallel execution.

HPDBSCAN outperforms all other considered implementations. Even the optimised
serial ELKI is slower than a serial run of HPDBSCAN. This can attributed to C++ code
being faster than Java and to the fact that HPDBSCAN uses the fast binary HDF5 file format,
whereas all other implementations have to read parse and create/ write a textual input and
output file. Having a closer look at the scalability reveals furthermore, that HPDBSCAN
scales very well even into many cores which is not the case for the DBSCAN implementations
available for Spark.

While DBSCAN on Spark is faster than RDD-DBSCAN, it delivers completely wrong
clusters, hence it has to be considered useless.

For the given skewed data set, scalability of RDD-DBSCAN is only given for a low
number of cores (the run-time difference between 16 and 32 cores is within to be expected
measurement deviations), but not beyond2. A closer analysis of the run-time behaviour
reveals that in the middle of the running implementation, only one long running task of
RDD-DBSCAN is being executed by Spark: while one core is busy executing this task, all
other cores are idle and the subsequent RDD transformations can not yet be started as they
rely on the long running task. Amdahl’s law [5] explains why RDD-DBSCAN does not scale
beyond 16 or 32 cores: adding more cores just means adding more idle cores; while one
core executes the long running task, the remaining 15 or 31 cores are enough to handle the
workload of the other parallel tasks.

In fact, the serial ELKI using just one core is faster than RDD-DBSCAN using up to 8 cores
and even beyond, RDD-DBSCAN is not that much faster and not really justifying using a
high number of cores. The long running task in the middle of the RDD-DBSCAN run can be
attributed to skewed data. As already explained in Section 5.4.1, the domain decomposition
of RDD-DBSCAN does not yield smaller rectangles than 2 eps which limits the number of
resulting spatial partitions and degree of parallelism and leads to imbalanced workloads.
In contrast, HPBDBSCAN can use for its domain decomposition smaller rectangles (or
hypercubes in the general case).

While the HPC implementations are much faster than the big data implementations, it is
in favour of the latter that HPC implementations requires much more lines of code than the
more abstract Scala implementations for Spark.

2Remarkably, the authors of RDD-DBSCAN [13] performed scalability studies only up to 10 cores.

15 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

6 Some Side Notes on Good Academic Practise

The experiences made when performing the described evaluation give also some insights
into good and bad academic practise:

• With the advent of fake or bogus journals, not only honest authors may be trapped
by these journals, they open also doors for plagiarism published in such journals1. As
these journals are not concerned about their reputation, it is impossible to fight this
kind of plagiarism as these journals will not retreat articles.

• Authors of scientific papers denying access to their implementations prevent re-
producing their results. Thus, validating and reviewing their claims concerning the
performance of their algorithms and implementations is impossible.

• Demonstrating scalability for just a few nodes (as done by some of the authors of the
Spark implementations) is not sufficient to prove scalability on a bigger scale – an
insight that is well accepted in the HPC scientific community but is still not common
in the Big Data scientific community.

1A plagiarised version of Cordova et al. [13] using the title “Efficient Clustering on Big Data Map Reduce Using
DBScan” has been accepted and published in the International Journal of Innovative Research in Science, Engineering
and Technology.

16 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

7 Summary and Outlook

We surveyed existing parallel implementations of the spatial clustering algorithm DBSCAN
for High-Performance Computing (HPC) platforms and big data platforms, namely Apache
Hadoop and Apache Spark. For those implementations that were available as open-source,
we evaluated and compared their performance in terms of run-time. The result is dev-
astating: none of the implementations for Apache Spark is anywhere near to the HPC
implementations. In particular on bigger (but still rather small) data sets, most of them fail
completely and do not even deliver correct results.

As typical HPC hardware is much more expensive than commodity hardware used in
most big data applications, one might be tempted to say that it is obvious that the HPC
DBSCAN implementations are faster than all the evaluated Spark DBSCAN implementa-
tions. However, in this case study, the same hardware was used (in this case, HPC hardware,
but using instead commodity hardware would not change the result). An analysis reveals
that typical big data considerations such as locality of data are not relevant in this case
study, but rather proper parallelization such as decomposition into parallel tasks matters.
The Spark implementations of DBSCAN suffer from a suitable decomposition of the input
data. Hence, skewed input data leads to tasks with extremely imbalanced running times.
However, as the example geo-tagged Twitter data set shows, skew in spatial data is not
unusual in practise.

However, it has to be said that in general, the big data platforms such as Spark offer
resilience (such as re-starting crashed sub-tasks) and a higher level of abstraction (reducing
time spent implementing an algorithm) in comparison to the HPC approach.

As future work, it is worthwhile to transfer the parallelization concepts of the HPDB-
SCAN [22] to a Spark implementation, in particular the domain decomposition below rectan-
gles/hypercubes smaller than 2 eps. This would give the end user faster DBSCAN clustering
on big data platforms. And having more or less the same parallelization ideas implemented
on both platforms would also allow to assess influence of C/C++ versus Java/Scala and of
MPI versus the RDD approach of Spark. Also, the scientific binary HDF5 data file format
can currently not be processed by Hadoop or Spark in a way that data storage locality is
exploited. As soon as the big data implementations of algorithms such as DBSCAN become
less CPU bound and instead more I/O bound, data locality matters. A simple approach to be
able to exploit the harder to predict locality of binary formats is to create some sort of “street
map” in an initial and easily to parallelize run and use later-on the data locality information
contained in this street map [20].

17 of 21 November 8, 2016

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

8 Acknowledgment

The author likes to thank all those who provided implementations of their DBSCAN al-
gorithms. Special thanks go to the division Federated Systems and Data at the Jülich
Supercomputing Centre (JSC), in particular to the research group High Productivity Data
Processing and its head Morris Riedel for my stay as visiting scientist which led to fruitful
discussions, to providing computing time, and finally enabled writing this paper. The au-
thor gratefully acknowledges the computing time granted on the supercomputer JUDGE at
Jülich Supercomputing Centre (JSC).

18 of 21 November 8, 2016

Bibliography

[1] Spark_DBSCAN source code. GitHub repository https://github.com/aizook/
SparkAI, 2014.

[2] Apache Spark distance between two points using squaredDistance. Stack Overlow
discussion http://stackoverflow.com/a/31202037, 2015.

[3] ScalaNLP/Nak source code. GitHub repository https://github.com/scalanlp/nak,
2015.

[4] DBSCAN On Spark source code. GitHub repository https://github.com/mraad/
dbscan-spark, 2016.

[5] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer
conference, pages 483–485. ACM, 1967.

[6] Apache Software Foundation. Apache Hadoop. http://hadoop.apache.org/.

[7] Apache Software Foundation. Apache Spark. http://spark.apache.org/, 2016.

[8] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. The R*-
tree: an efficient and robust access method for points and rectangles. In Proceedings of
the 1990 ACM SIGMOD international conference on Management of data, volume 19. ACM,
1990.

[9] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975.

[10] Christian Bodenstein. HPDBSCAN Benchmark test files. http://hdl.handle.net/
11304/6eacaa76-c275-11e4-ac7e-860aa0063d1f, 2015.

[11] Natalino Busa. Clustering geolocated data using Spark and DB-
SCAN. O’Reilly web page https://www.oreilly.com/ideas/
clustering-geolocated-data-using-spark-and-dbscan, 2016.

[12] Irving Cordova. RDD DBSCAN source code. GitHub repository https://github.com/
irvingc/dbscan-on-spark, 2014.

[13] Irving Cordova and Teng-Sheng Moh. DBSCAN on Resilient Distributed Datasets. In
2015 International Conference on High Performance Computing & Simulation (HPCS), pages
531–540. IEEE, 2015.

[14] Justin Cranshaw, Raz Schwartz, Jason I Hong, and Norman Sadeh. The livehoods
project: Utilizing social media to understand the dynamics of a city. In Proceedings of
the Sixth International AAAI Conference on Weblogs and Social Media. AAAI Press, 2012.

19

https://github.com/aizook/SparkAI
https://github.com/aizook/SparkAI
http://stackoverflow.com/a/31202037
https://github.com/scalanlp/nak
https://github.com/mraad/dbscan-spark
https://github.com/mraad/dbscan-spark
http://hadoop.apache.org/
http://spark.apache.org/
http://hdl.handle.net/11304/6eacaa76-c275-11e4-ac7e-860aa0063d1f
http://hdl.handle.net/11304/6eacaa76-c275-11e4-ac7e-860aa0063d1f
https://www.oreilly.com/ideas/clustering-geolocated-data-using-spark-and-dbscan
https://www.oreilly.com/ideas/clustering-geolocated-data-using-spark-and-dbscan
https://github.com/irvingc/dbscan-on-spark
https://github.com/irvingc/dbscan-on-spark

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

[15] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard API for shared-
memory programming. IEEE computational science and engineering, 5(1):46–55, 1998.

[16] Bi-Ru Dai and I-Chang Lin. Efficient map/reduce-based DBSCAN algorithm with
optimized data partition. In 2012 IEEE Fifth International Conference on Cloud Computing,
pages 59–66. IEEE, 2012.

[17] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In
Proceedings of the 6th Symposium on Operating Systems Design & Implementation, Berkeley,
CA, USA, 2004. USENIX Association.

[18] M Ester, HP Kriegel, J Sander, and X Xu. Density-based spatial clustering of applications
with noise. In Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining. AAAI Press, 1996.

[19] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana Robinson. An
overview of the HDF5 technology suite and its applications. In Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases, pages 36–47. ACM, 2011.

[20] Fabian Glaser, Helmut Neukirchen, Thomas Rings, and Jens Grabowski. Using MapRe-
duce for High Energy Physics Data Analysis . In 2013 International Symposium on
MapReduce and Big Data Infrastructure. IEEE, 2013/2014.

[21] Markus Götz. HPDBSCAN source code. Bitbucket repository https://bitbucket.
org/markus.goetz/hpdbscan, 2015.

[22] Markus Götz, Christian Bodenstein, and Morris Riedel. HPDBSCAN: highly parallel
DBSCAN. In Proceedings of the Workshop on Machine Learning in High-Performance Com-
puting Environments, held in conjunction with SC15: The International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM, 2015.

[23] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. In Proceed-
ings of the 1984 ACM SIGMOD international conference on Management of data, volume 14.
ACM, 1984.

[24] Dianwei Han, Ankit Agrawal, Wei-Keng Liao, and Alok Choudhary. A novel scal-
able DBSCAN algorithm with Spark. In Parallel and Distributed Processing Symposium
Workshops, 2016 IEEE International, pages 1393–1402. IEEE, 2016.

[25] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan. Mr-dbscan:
a scalable mapreduce-based dbscan algorithm for heavily skewed data. Frontiers of
Computer Science, 8(1):83–99, 2014.

[26] Yaobin He, Haoyu Tan, Wuman Luo, Huajian Mao, Di Ma, Shengzhong Feng, and
Jianping Fan. MR-DBSCAN: an efficient parallel density-based clustering algorithm
using MapReduce. In 2011 IEEE 17th International Conference on Parallel and Distributed
Systems (ICPADS), pages 473–480. IEEE, 2011.

[27] IBM. General Parallel File System Knowledge Center. http://www.ibm.com/support/
knowledgecenter/en/SSFKCN/, 2016.

[28] Shantenu Jha, Judy Qiu, Andre Luckow, Pradeep Mantha, and Geoffrey C Fox. A tale
of two data-intensive paradigms: Applications, abstractions, and architectures. In 2014
IEEE International Congress on Big Data, pages 645–652. IEEE, 2014.

20 of 21 November 8, 2016

https://bitbucket.org/markus.goetz/hpdbscan
https://bitbucket.org/markus.goetz/hpdbscan
http://www.ibm.com/support/knowledgecenter/en/SSFKCN/
http://www.ibm.com/support/knowledgecenter/en/SSFKCN/

Survey and Performance of DBSCAN Implementations for Big Data and HPC Paradigms

[29] Aliaksei Litouka. Spark DBSCAN source code. GitHub repository https://github.
com/alitouka/spark_dbscan, 2014.

[30] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, Volume 1: Statistics, pages 281–297. University of California Press, Berkeley,
California, 1967.

[31] MPI Forum. MPI: A Message-Passing Interface Standard. Version 3.0. http://
mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, September 2012.

[32] OpenSFS and EOFS. Lustre homepage. http://lustre.org/, 2016.

[33] Md Mostofa Ali Patwary. PDSDBSCAN source code. Web page http://users.eecs.
northwestern.edu/~mpatwary/Software.html, 2015.

[34] Md Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik
Manne, and Alok Choudhary. A new scalable parallel DBSCAN algorithm using the
disjoint-set data structure. In International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–11. IEEE, 2012.

[35] Pethuru Raj, Siddhartha Duggirala, Anupama Raman, and Dhivya Nagaraj. High-
Performance Big-Data Analytics. Springer, 2015.

[36] Erich Schubert, Alexander Koos, Tobias Emrich, Andreas Züfle, Klaus Arthur Schmid,
and Arthur Zimek. A framework for clustering uncertain data. PVLDB, 8(12):1976–1979,
2015.

[37] Yandong Wang, Robin Goldstone, Weikuan Yu, and Teng Wang. Characterization
and Optimization of Memory-Resident MapReduce on HPC Systems. In Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International, pages 799–808. IEEE,
2014.

[38] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. A fast parallel clustering algorithm
for large spatial databases. Data Mining and Knowledge Discovery, 3(3):263–290, 1999.

[39] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings
of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX
Association, 2012.

21 of 21 November 8, 2016

https://github.com/alitouka/spark_dbscan
https://github.com/alitouka/spark_dbscan
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://lustre.org/
http://users.eecs.northwestern.edu/~mpatwary/Software.html
http://users.eecs.northwestern.edu/~mpatwary/Software.html

	Introduction
	Foundations
	DBSCAN
	HPC
	Big Data
	Convergence of HPC and Big Data

	Related Work
	Survey of Parallel DBSCAN Implementations
	HPC DBSCAN Implementations
	Spark DBSCAN Implementations
	Common features and limitations of the Spark Implementations

	MapReduce DBSCAN Implementations

	Evaluation of Parallel DBSCAN Implementations
	Hardware and Software Configuration
	Input Data
	DBSCAN Implementation Versions
	Measurements
	Preparatory Measurements
	Run-time Measurements on Small Data Set
	Run-time Measurements on Big Data Set

	Discussion of Results

	Some Side Notes on Good Academic Practise
	Summary and Outlook
	Acknowledgment

