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Abstract.

Emerging challenges for scientific communities are to efficiently process big data obtained by ex-
perimentation and computational simulations. Supercomputing architectures are available to support
scalable and high performant processing environment, but many of the existing algorithm implemen-
tations are still unable to cope with its architectural complexity. One approach is to have innovative
technologies that effectively use these resources and also deal with geographically dispersed large
datasets. Those technologies should be accessible in a way that data scientists who are running
data intensive computations do not have to deal with technical intricacies of the underling execution
system. Our work primarily focuses on providing data scientists with transparent access to these
resources in order to easily analyze data. Impact of our work is given by describing how we enabled
access to multiple high performance computing resources through an open standards-based middle-
ware that takes advantage of a unified data management provided by the the Global Federated File
System. Our architectural design and its associated implementation is validated by a usecase that
requires massivley parallel DBSCAN outlier detection on a 3D point clouds dataset.
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system, security, standards, parallel processing

1. Introduction. An ever increasing number of datasets from scientific experi-
mentation such as earth observatories or computational simulations generate an enor-
mous amount of information for discovering useful knowledge. In order to analyze
data, the area of statistical data mining provides useful methods and tools to extract
and explore useful patterns or prediction models. The field of statistical data mining
comes with intuitive methods to learn from data, using a wide variety of algorithms
for clustering, classification and regression. Several implementations are available, for
example, Matlab, R, Octave [3], or scikit-learn. Mostly, these tools offer serial im-
plementation of the algorithms, which is quite challenging (i.e. insufficient memory,
extremely long running times, etc.) for processing the volume of data having terabytes
or petabytes of magnitude. Considering that amount, the resources running the data
processing tools require large number of processors, as well as much more primary
and secondary storage. Therefore, parallel tools and platforms such as Hadoop [15]
implementing the map reduce paradigm [18] and selected massively parallel algorithm
developments based on the MPI and OpenMP environments are commonly used.

We observe mainly tools for (High Performance Computing) HPC and High
Throuput Computing (HTC) paradigms evolving concurrently, but each supporting
their own set of requirements. Scientific communities, either from biology, physics and
medicine adopt more conservative approaches in order to retain their focus on scien-
tific findings and as such traditional HPC environment still play a major role in the
relatively new realm of ’big data’. Given the stability of HPC environments and its
benefits using locally parallel filesystems with parallel I/O techniques motivates our
work to enable straightforward job executions managed by HPC sites that seamlessly
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access data from a distributed file system service which has not been traditionally
supported in HPC-based execution services.

We validate our approach with a use case from earth science using 3D points cloud
obtained from devices that measure a large number of points of an object surface (i.e.
in our case the inner city of Bremen). The data analysis of this dataset has the goal to
cluster special data points and identify any noise elements. In this paper we describe
the architectural design and implementation necessary to run data analysis jobs on
HPC resources through standards-based UNICORE middleware [10] and uses data
from the Global Federated File System [28] that we derive from the architecture of the
Extreme Science and Engineering Discovery Environment (XSEDE) [24]. UNICORE
is a HPC middleware and deployed on production on XSEDE supercomputing sites,
whereas the GFFS is a distributed network file system which is an integral component
of the Genesis II platform, that is also consider to be a middleware element in XSEDE.
Our architectural design overcomes the limit that the data is hosted by the GFFS
cannot be easily made available to the job executions that perform data clustering
over the points cloud data set.

The paper is structured as follows. Section 2 describe the basic background of
the technologies and standards used as part of our research. Section 3 lists a detailed
requirement analysis we obtained during the course of the integration effort. Section
4 describes the security model and the implementation we derived for supporting the
requirements from Section 3. Section 5 offers detailed insights on our architectural
design and its realization that enable the UNICORE and GFFS integration while
addressing the selected requirements. Section 6 takes a massively parallel data analysis
application in order to validate our work based on a real world use case. Section 7
provides a brief overview of the related work, and the paper concludes in Section 8.

This article is a joint and extended version of [34] and [40].

2. Background. This section gives a brief background of the technologies, al-
gorithms and standards that supported our work.

2.1. UNICORE. UNICORE is an HPC middleware which is built upon the
priniciples of Service Oriented Architecture (SOA). It realizes compute, information
and data functions through a set of stateful web services [42]. These services are
designed in such a way that they enable seamless access to heterogeneous high per-
formance computing resources. In this sense, the middleware layer to these clusters
provides access and location transparency to compute and and thus offers scientists
a unique environment hiding low level technical complexities (i.e. avoiding writing
and submitting error-prone scheduler dependent job scripts). The compute access
transparency enables an abstraction of different flavors of resource management sys-
tems (sometimes also referred to as schedulers), such as SLURM [45] or Torque [6],
and more notably through a unified and standard interface. Figure 2.1 depicts the
basic UNICORE architecture that is composed of layers with distinct functionality,
including Client, Services and Target System Interface.

The client layer provides API and end user interface, which include interfaces for
constructing and sending client requests to remotely deployed services. The client
side API is useful for scientific communities which are not necessarily using the UNI-
CORE’s povided interface, but instead their own clients such as their application
specific science portals or gateways (e.g. UltraScan Scientific Gateway [33]. Hence,
all important functionality of the middleware services can be invoked through the di-
rect client API interaction. The end user interface offers a rich client interface called
UNICORE Rich Client (URC) [19], with advanced user controls to compose and or-
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Fic. 2.1. Basic UNICORE architecture with example deployments of two HPC systems in
Juelich (JUDGE and JUROPA).

chestrate scientific workflows. The second variant is a command line client called
UNICORE Command Line (UCC), which provides an interface for advanced users
who know the low level details of writing job request scripts to be executed jointly on
the batch system. For a more detailed architecture explanation we refer to [10].

The Services layer plays a vital role in enabling job execution and data manage-
ment by means of SOAP [16] over XML based web services. Not only the Services
layer implement the core functionalities, but also the hosting environment which can
host and deploy stateless and stateful web services, for instance, WS-I (Web Services
Interoperability) [5] and WS-RF (web Services Resources Framework) [42]. Job man-
agement functionality implements a complete life cycle through which job passes, and
that includes submission, monitoring and data staging. The job management func-
tionality is supported by UNICORE’s embedded scheduling and execution framework,
called XNJS (Extended Network Job Supervisor) [43]. It manages the incoming mid-
dleware requests against the hosted application and resource capabilities (for example
number of available nodes, processors per node etc.). The Services layer gives a con-
figuration based interface to expose underlying cluster resource and environment, so
that XNJS can perform resource match making upon the client initiated job requests.
After validating the job request, the XNJS component formats the job to the generic
UNICORE protocol, and then sends it to the resource manager specific implementa-
tion of Target System Interface. This is the layer where the generic UNICORE script
gets translated to the request formatted according to the batch system.

As a summary, a simple job execution sequence comprises of, client job submission
to the Services layer, then the request is forwarded to XNJS, and then it is communi-
cated to the Target System tier. This tier in turn directly interacts with the low level
batch system, and fetch job statuses, and manage underlying running file transfers
during the job’s execution life cycle.



4 SHAHBAZ MEMON et al.

2.2. The Global Federated File System. The Genesis II Global Federated
File System (GFFS) [28] is a distributed file system that provides researchers with
tools for securely managing and sharing their scientific data. The GFF'S offers a set of
interfaces that manage jobs and provide access to the required scientific data. This is
achieved through the GFFS-Queue component, which is also based on SOA wherein
standards-based interfaces are adopted for storing and accessing remote compute and
data resources. In order to support federation across different organizational enti-
ties, the GFFS provides a hierarchical file system structure with standard namespace
locations for storing user profiles, groups, directories, and service elements such as
meta-scheduling queues and Basic Execution Service endpoints (BES) [29] for pro-
cessing jobs. Figure 2.2 provides an overview of the integrated architecture with
Genesis IT and UNICORE Basic Execution Service (BES) endpoints interacting with
the GFFSs root container.
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F1G. 2.2. The Global Federated File System (GFFS) architecture.

The GFFS implements many of the standard Unix commands (such as cp and
mv) in a console mode through the so called grid shell. There is also a GUI view
of the GFFS, which supports rich drag and drop file management. The GFFS also
provides a FUSE file system interface [2] that allow users to mount the GFFS on
a Unix directory and operate on files in the GFFS as if a user is interacting with
her local file system. The GFF'S has an export feature like NFSv4 that allows users
to share part of their own file system visible within the GFFS, and to other users
part of the broader federated infrastructure. The GFFS Queue is a metascheduler
that supports submission of multiple jobs for subsequent distribution to the execution
service endpoints connected to the queue. The GFFS Queue provides researchers with
a mechanism for managing and controlling their computations via a GUI as well as
with familiar command line tools such as ”qgstat” and ”gkill”. Jobs will be distributed
to BES resources automatically by the GFFS Queue, but can also be rescheduled as
needed. The XSEDE project benefits from the GFFS by giving researchers a way to
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securely share data with their colleagues and by providing a high level view of the
computational resources available at the XSEDE infrastructure through the GFFS
Queue.

2.3. Standards. RNS (Resource Namespace Service) [36] is an Open Grid Fo-
rum initiative that standardizes the naming of distributed resources that form an
infrastructure. It has a simple set of operations for managing grid and cluster ser-
vices mapped as file system operations such as rm, mkdir or cp. The RNS specification
provides client applications to couple WS-Addressing [22] based endpoints with hu-
man readable notations. For instance, a job execution service managing multiple jobs
can be represented as a parent directory and individuals jobs are child directories
which may further contain the contents of their working directories.

Considering the stateful service based endpoints, wherein web service resources
can have a nested heirarchical structure, the RNS representation is very helpful in
providing an access and location transparency to underlying resources. The GFFS
mentioned earlier implements the core RNS and its Web Services Resource Framework
(WSRF) [37] rendering to access service endpoints. The statefulness gives individual
access which is very much analogous to the domain of distributed remote objects.
As far as the data transfer is concerned the GFFS primarily uses the BytelO [35]
standard. BytelO provides a set of interfaces to interact with bulk data sources and
sinks. The BytelO standard enables large amount of data in an efficient way. It has
two interfaces, RandomBytelO and StreamableBytelO. RandomBytelO provides an
interface to access bulk data in a stateless and random manner. This interface is
normally being called when a client transfer large files. StreamableBytelO interface
allows data transfer data in a stateful manner. It is normally used for accessing short
files, in most cases standard outputs of managed jobs.

The Job Submission and Description Language (JSDL) [8] is an XML-based com-
prehensive data model for specifying computational job requirements consisting of
application, resources and data concepts. UNICORE and Genesis II clients specify
job requirements in the JSDL format. UNICORE server side implements most of the
JSDL, and also its related profiles and extensions.

The JSDL specification has a generic model for representing multiple type of re-
source settings, such as HPC and HTC. The JSDL model further provides a set of
profiles which imposes constraints on requirements according to the type of resource
architecture. These requirements may include, file staging modalities, parallel exe-
cution environments and parametric jobs. This paper mainly targets HPC resource
types which normally use parallel execution environments and a resource manage-
ment system. HPC resource profile [12] enable users to specify more internal HPC
architecture specific requirements in combination with restrictions on the execution
service. The HPC file staging profile [44] captures data movement specific elements to
be used within heterogeneous cluster environments. This profile impose constraints
on using HPC specific data staging attributes as part of the job submission request.
For instance, the request may contain FTP user name and password credentials for
the BES instance to carry out third-party file transfers on user’s behalf.

The related technologies presented above provide a base for providing a seamless
and robust middleware platform to tackle big data challenges. One of the common big
data processing machinery requirement is to have an iterative execution for discovering
optimal set of algorithm parameters. Specifically, data clustering algorithms such as
K-Means or DBSCAN require certain parameters before their processing. In the case
of iterative execution multiple runs with a varying set of parameters are required.
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If we combine these runs into a single composite job then this kind of job is called
parametric. UNICORE as our base execution middleware supports parametric jobs
through the JSDL Parameter Sweep extension [23]. This specification provides an
intuitive model to parametrize multiple parts of job request per se. It may allow client
application to sweep over a list of arguments, file transfer locations and environment
variables specified under the JSDL request. The sweep model can represent different
kind of iterations, either be it a element-wise iteration on a set or a counter with
configurable stepping factor. There are two major kind of sweeps the specification
provides, Document sweep and File sweep. The Document sweep provides a model
to modify a requested JSDL instance. The File sweep is an advanced model which
presents a data structure to modify the contents of the files imported before the job
execution phase. This kind of sweep is applicable to text based files. UNICORE
middleware implements both kind of sweeps through its client API and command line
client (UCC). This specification is used to automate the iterative data clustering on
the points cloud data set we use in this paper.

OGSA-Basic Execution Service (BES) [8] is an Open Grid Forum (OGF) ini-
tiative which provides a web services-based interface for managing and monitoring
computational jobs in HPC and HTC environments. For a job submission use case
BES interface accepts a JSDL instance and its related profiles as a parameter and
then runs it on back-end resource. The focus of this paper is based on a scenario in
which UNICORE server expose it computing capabilities via BES model, and Genesis
IT client use this interface to invoke remote calls on the UNICORE endpoint.

2.4. Unsupervised Learning. While the overall architectural design in this
paper is applicable to many learning models, our work is using parallel version of the
Density Based Spatial Clustering for Application with Noise (DBSCAN) algorithm
[21]. The focus is rather on the access of the algorithm implementation through
the UNICORE middleware and the GFFS based file system. Therefore, this section
briefly introduces the DBSCAN method. Goetz et al. describes more details on the
algorithm implementation in [27], which gives more detail on what parallelization
strategies are used to achieve scalability and high performance while analyzing large
data sets. DBSCAN [21] is an unsupervised density based clustering algorithm. The
cluster based on density is represented by a number of points MinPoints within a
specified radius Epsilon. These are the important user defined parameters of the
algorithm to identify the clusters.

i) Core point: A central point in a dense region, it has more than a specified
number of minimum points MinPoints within its neighborhood (or radius) Epsilon.

ii) Border point: A point that lies on the border of the dense region, it fewer than
minimum points MinPoints within its neighborhood (or radius) Eps

iii) Noise point: A point that is neither a core point nor a border point

DBSCAN intrinsically enables maximizing the local point density recursively. It
sets apart from other clustering algorithms as it detects the clusters of arbitrary shapes
and sizes. Notably, it is resistant to noise and suitable for finding anomalies or filter
specific noise signals from the data. We use the parameter-based DBSCAN learning
algorithm as a specific example of how our architectural design and its implementation
can be generically used by a wide variety of learning algorithms in this paper.

3. Requirement Analysis. During the course of transparent integration for
bridging both technologies, we identified multiple requirements which not only aims
at superficially combining them, but also some extensions in the UNICORE services
layer which will help to tackle "big data” challenges from machine learning and data
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# Requirements

Description Environment
R1 | Secure Trust Delegation GFFS and UNICORE
R2 | Openness OGSA-BES, JSDL
R3 | Data transport RNS, BYTEIO
R4 | Infrastructure integration XSEDE, MYPROXY
R5 | Transparency UNICORE Server
R6 | Parameter sweep JSDL Parameter Sweep
R7 | Extensible resource and job model | GFFS and UNICORE

TABLE 3.1

Summary of Requirements

mining. The integration has taken XSEDE infrastructure as an example, but the im-
plementation is applicable to any distributed computing and storage infrastructure.
The major integration requirements from both the technologies’ perspective are sum-
marized together with relevant technology environments in Table 3. They lie in the
following areas. R1) Secure Trust Delegation: As in a distributed service interaction
a user interacts with a portal or meta scheduler which then forwards the request to
a service that takes care of the job execution and also calls upon data management
services to pull and fetch data. While the user is participating in the very beginning,
then the following phases are to be done by other services, require some kind of trust
delegation which the user entity assigns to the target job execution and data man-
agement services to act on her behalf. In our scenario a user communicates a data
oriented job request with a set of input data staging elements, therefore trust delega-
tion has to be implemented by the UNICORE platform to understand the GFFS user
requests. R2) Openness: In any kind of communication between a user and the GFFS
or UNICORE, it should support standards-based protocols, so that users or services
from different middleware backgrounds can easily interact through UNICORE and
the GFFS client-side APIs. R3) Data transport: As UNICORE jobs are intended to
use data from the GFFS, the running jobs should be able to upload and download
data from the file system space. R4) Infrastructure integration: XSEDE-based iden-
tity management should be understandable to both layers of job submission and data
management middlewares. R5) Transparency: The jobs managed by UNICORE in
an HPC environment which accesses data from the GFFS data should not know the
physical location and also on how the data is structured across data nodes within the
file system space. R6) Parameter sweep: This requirement is very specific to jobs
which require re-running the same application but with different parameters:these are
called composite or parametric jobs. In a parametric job, the execution middleware
iterates through a set of parameters provided by a user job submission request and
creates a separate job internally for each parameter combination. In this case UNI-
CORE middleware should be capable of interpreting and incarnating parametric jobs.
R7) Extensible resource and job model: As supercomputing architectures are evolving
to support data and network intensive applications, the hosting middleware should
be adaptive to new changes and thus possess an extensible model for users specifying
sophisticated requirements. For instance number of GPGPUS or use of execution
environment.
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4. Interoperable Security Model. The GFFS security model is based on the
Security Assertion Markup Language (SAML) [41] standard, and takes the UNICORE
SAML profile [14] as a reference implementation. The GFFS extends the UNICORE’s
SAML profile to represent the trust delegation chains of the Genesis II security model.
A delegation chain encompasses that a user has delegated some level of trust to a
service in the GFFS in order to achieve a task, such as processing a job. Mostly,
delegation operations include three entities, (1) a grid user (for our example, called
U, (2) a TLS connection identified by an X.509 certificate (called C), and (3) a grid
resource (called R). Longer delegation chains usually contain all three of these types
of entities as the first links in the chain.

In the GFFS, the first entity U is always a user defined as a grid STS (Secure Token
Service) object. This entity is the prime mover for any operations that are performed
in the GFFS. The user’s rights within the grid’s access control list permission system
dictates what that user can and cannot do with regard to every grid resource.

The client software must authenticate as the grid user U to obtain services from
a GFFS container. This is where the second security entity C comes in; it is the con-
nection by the client software at the behest of the user. Initially, the client credentials
only contain C, as one makes the connection before STS authentication occurs. In the
XSEDE login process, this connection is always based on X.509 credentials obtained
from a certificate authority service, the so called XSEDE MyProxy server. Thus, it
can be a well-known identity within both Genesis (via a Kerberos-based STS) and
UNICORE (via the grid-mapfile). In the example, the client software first authenti-
cates to MyProxy by using user name and password to obtain the certificate C. Then,
the client authenticates to the Kerberos STS in the GFFS to obtain grid user U.

Kerberos
STS

‘ Runjob W>C>R GridServicE‘-':‘-

End User

Fi1c. 4.1. End User interaction with security and grid services.

After the user authenticates, the client software’s credential wallet will contain
the first delegation of trust, U—C. This states that the grid user U trusts the TLS
connection C to act on its behalf. Afterward, all of the actions taken by the TLS
connection C are understood to be U’s actions. Any access that provides U with
permissions will also be granted to C. That may include submitting a job to a BES
named R. This is the second point where trust is delegated; the certificate for TLS
connection C signs a new trust delegation that expresses ”C trusts R” to perform a
job execution. This extends the length of the delegation chain by one, so that it now
has all three entities involved in two trust delegation objects. This can be represented
with delegation arrows such as:

e First delegation: U—C (The grid user trusts the TLS connection)
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e Second delegation: C—R (The TLS connection trusts the resource)
e Full Chain: U—-C—R (The user U trusts the connection C which trusts R to
run a job)

This new delegation chain can be presented by resource R when it needs to do
further actions on the grid user’s behalf. Moreover, actions might include storing file
staging results back to RNS space (U—C—R—D, where D is a Data folder or possibly
submitting the job to another BES for final processing. The important point is that
entity D is just another resource to which trust can be delegated, and the chain can
be continued in that manner for as long as its delegation depth limit allows. Figure
4.1 depicts a typical interaction of an end user with the security services and a target
grid (execution or data management) service.

One challenge while interoperating between the GFFS and UNICORE integration
arose due to a difference in interpretation of the SAML assertions. The delegation
chains in the GFFS are tightly-coupled, and do not allow mixing and matching of
individual entities. This is not directly provided by the UNICORE SAML implemen-
tation, which permits the receiver to mix and match any delegations provided in a
message (U—C—R is considered to be two separable delegations U—C and C—R).
In the GFFS model, a delegation chain must be used in its entirety or not at all.

To address this difference, the GFFS implementation of SAML adds a unique
identifier to each SAML assertion. A chain such as U—C—R is built by embedding
the identifier of the U—C assertion in the C—R assertion. To make this cryptograph-
ically secure, the signature of the U—C assertion is also embedded in the C—R as-
sertion before C—R itself is signed. This enforces the connections between the GFFS
delegation chains while still leveraging the UNICORE’s Security Assertion Markup
Language (SAML) implementation. Upon reception, the chains are reassembled and
any assertions that are referenced by a longer delegation chain are removed from the
pool of available assertions.

The Genesis delegation chain model supports having multiple chains in a creden-
tial wallet. This supports the user possessing multiple different types of identity and
authorization on resources. The users will always have their own identity as a cre-
dential, which allows them access to resources where the user has been given explicit
permission. The user will also usually have at least one group credential, which allows
them access to portions of the grid file system. Additional group credentials may con-
vey access to different BES or queue resources within the grid. Thus the credential
wallet approach supports a flexible authorization appropriate to the variety of grid
resources, possibly across multiple administrative domains, that may be required for
the user’s work.

The signing of credentials ensures that it is computationally infeasible to create a
fraudulent credential chain where a new identity is inserted into the credential chain.
Each credential records the signature of the prior element in the chain, along with
its unique identifier. Thus an attacker would have to compute a valid XML digital
signature inside a valid trust delegation object, where the unique id is also properly
signed by that signature.

To ensure that the credential wallet cannot be easily compromised and used for
playback attacks (where the valid credentials of a user are stolen and used by a differ-
ent user), all credentials must be ”anchored” with the current TLS session credential
of the grid client. At least one link in the credential chain must be identical to the
TLS session certificate. This ensures that playback is very difficult indeed, since the
stolen credentials must be based on the TLS session key that the user was employing
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at the time the valid credentials were minted. This mitigates attacks upon the server,
where the container database is compromised. Attacks using an entire set of stolen
client credentials are also somewhat mitigated, since the TLS session certificate is
based on a short-lived key pair.

With respect to the requirements mentioned in Table 3, the given security model
implementation covers R1-Secure Trust Delegation. XSEDE’s MyProxy access is
provided to allow XSEDE users run job with their infrastructure credentials. This
feature relates to R4-XSEDE MyProxy integration.

5. Integrated Architecture and Implementation. We have extended UNI-
CORE’s server tier to accept the incoming requests incoming from Genesis II remote
clients. The remote clients here implies the GFFS’s GFFS-Queue component which
is an entry point for a user to submit job. The GFFS-Queue acts as a meta sched-
uler that schedules the user’s request based on its resource requirements on a set of
available BES-based computing endpoints. Even though UNICORE understands BES
protocol, but still the execution service should know how to interpret, authenticate,
and authorize the incoming GFFS Queue requests. A separate UNICORE server ex-
tension is implemented that is invoked when server finds a security token containing
GFFS-related information in the incoming client request. The extension validates the
SAML chain by looking into every element of the chain. These elements are entities
(described in the previous section) which contain every stakeholder including end user
or service through which the request was passed. The standards-based access and the
validation of incoming requests required to trigger the data transfers serve the re-
quirements R2-Openness and R3-Data transport. The user doesn’t need to provide
the actual physical location of the GFFS hosted data, instead she uses the symbolic
RNS qualified hierarchical paths. This feature is inclined to support R5-Transparency.

Before a Genesis II client is able to send jobs to a UNICORE BES endpoint, a
Genesis II container should recognize and link the UNICORE BES instance into the
RNS space. The linking is achieved through the Endpoint Reference Minting process.
An EPR (Endpoint Reference) is the basic component of the RNS. Every location in
the GFFS namespace has an EPR that identifies (1) where the resource lives and (2)
the X.509 certificate that represents the resource. Minting an EPR is the process of
creating a new EPR as an XML document that represents an external resource, such
as a UNICORE BES instance. The process of minting an EPR combines the URI
where the resource is located with the X.509 certificate expected as the resource’s
identity (which it would report over a TLS connection). Once an EPR is minted, the
EPR’s XML document can be stored locally as a file or added as a new link to the
grid namespace. When linked into the grid, a user with appropriate credentials can
see the entry in the GFFS files system and can use it to obtain whatever services the
resource provides.

The user’s XSEDE identity is extracted from the delegation chain, and the re-
trieved identity is validated against the authorization store of the UNICORE server
deployment. If the user is found under the authorization store then the required user
context is created for carrying out GFFS data staging invocations. After the context
creation phase, the server extension releases its control and job moves to the next
phase of execution. In the beginning of the execution phase the request is processed
further to carry out the GFFS-based data stagings of jobs. Figure 5.1 shows the
job request encoded in JSDL containing application requirements and data staging
elements pointing to the GFFS space. Note that the job will be executed on the
UNICORE site, therefore Genesis II-BESes are not involved in this sequence.
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The GFFS-based data transfer is realized through an XNJS extension. The GFFS
download component prepares a command to pull data from the GFFS. The command
(such as 'grid cp remote-source job-working-directory’) will be forwarded to
the Target System Interface (T'SI) that invokes the Genesis II ’grid’ command grace-
fully and downloads the data to the job’s working directory. In a likewise manner
the GFFS upload takes care of uploading output files to the remote GFFS location.
Any failure will make UNICORE fail the job and abandon any further processing
related to it. For every job which is sent by the Genesis II client UNICORE server
extension maintains an additional folder in each of the job’s working directory that
contain user’s contextual information.

The pictorial representation of a simple job submission sequence is shown in
Figure 5.1. In the first step, the Genesis 1T GUI client asks a user to log-in through
an XSEDE provided credentials. After the authentication phase (step 2), she uploads
data to the GFFS folder (step 3). In step 4 the user then submits a job request with
application details, and location of the data to be downloaded. In a similar manner,
output data paths are also specified. The user then selects a UNICORE endpoint and
run the job. Steps 5 and 7 shows a submission of request to the TSI and the target
batch system. As soon as the job has been submitted to the execution service, the
client continuously monitors the job until it reaches to a terminal state. Once the
job is finished successfully the output is fetched back from the remote job working
directory which is located on cluster’s file system to the GFFS space. Steps 6 and 8
depicts the TSI and the GFFS interaction. For the sake of brevity only a sequence of
major steps are being highlighted.

r Genesisll Command Line Client AuthN: Username e g
[ = ]E > & Password (XSEDE login) “F Client & User
Client
A A
4 I ©2) GFFs identity Fetch 4 3 A 1 ) Basic Authentication
Job, Subm/%smn 1 I Data upload V.
| | .
I | (@ xsepe kerberos sTs L W Myproxy Protocol Server@
1 XSEDE
1 1 1 R Previously Created ID (IGTF Certificate)
A MyProxy (CA)
| |
L} 1
1 " e —-—
BES/JSDLY . v v

A 4

[ GFFS Kerberos m__ Short Lived Credential ] [ GFFS Queue (SOAP / BES)
@
Global Federated UVa

File System

6 Download Job data

(o 5 )
| _[uﬁ AuthN (X.509 SLC) ]<E -_ N [ ¥ 'QOGSA-BES(JSDL) :I(G .:uthzf.l ) I UNICORE
UNICORE Gateway UNICORE/X \ SProcess JSDL job ridmap file I S

| 8 Upload Job data

Genesisll
s] and GFFS

€= = ===

v

= - Target
E NN MS (Torque, |, \| -, UNICORE TSI || =] GFFS Client
"“ @ SLURM) |~ [ 9 ] [ } HPC

>
l HPC Access Resource File System Resource

HPC Resource D Batch submit

Fic. 5.1. The UNICORE and the GFFS integration showing a job submission sequence with
data staging.

Another building block for supporting semi-automated data analytics is to allow
user running jobs of parametric nature. Specially, the use case presented in the next
section needs multiple runs required to identify optimal set of application parame-
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ters. By using the JSDL Parameter Sweep extension implementation of UNICORE
[32] users can run multiple jobs as a single request. This is a very useful feature that
has a positive impact on the overall data analysis life cycle. Considering, if manually
running many jobs and compiling resultant outputs by hand, it will take user’s consid-
erable time just for book keeping the previous and next set of runs. We experimented
by sending parametric jobs via Genesis II client and UNICORE BES implementation,
and compared this model with manual SSH based submissions. By following this
approach the user’s administrative and usability overhead has significantly reduced.
Figure 6.1 shows the snapshot of the used JSDL Parameter Sweep instance for the
application.

6. Usecase: Point Cloud Anomaly Detection. Anomaly or outlier detection
algorithms primarily identify a set of data points that appear to be different than
the remaining data. There are different data clustering approaches which help data
scientists to discover anomalies and a meaningful set of clusters from data. Several
methods exist, for instance K-Means and Agglomerative clustering, have been used
in commercial and scientific domains.

In this paper we place our focus on the DBSCAN [21]] algorithm which allows
to reduce noise factor of the 3D point cloud dataset. A point cloud dataset captures
objects in three dimensional space representing the external surface of objects by a
point cloud. In our case, we use a data set that contains a point cloud for landscape
elements, such as different kind of buildings, monuments or bridges, of the city of Bre-
men, Germany. This points cloud has approximately 81 million data points. We use
DBSCAN to detect outliers in particular noise artefacts produced by the 3D scanner
when recording the 3D point cloud. In practice if the dataset is processed using serial
algorithm, it may take a couple of days. Therefore, it is imperative to have a parallel
implementation of DBSCAN, which not only improves the performance, but also uses
storage and memory requirements in an efficient manner. Another requirement is to
have an implementation that adequately exploits execution environments of HPC. In
order to support the application, HPDBSCAN [27] implementation is used. It is an
initiative of Juelich that provides parallel implementation of DBSCAN. For efficient
data storage and access, it uses the HDF5 data format.

We deployed this application on XSEDE infrastructure. We specifically used
the BlackLight cluster that is deployed at Pittsburgh Supercomputing Center (PSC).
A UNICORE service instance has been deployed and linked with the XSEDE-wide
GFFS. Before the job execution, the dataset is placed on the GFFS node at the Indiana
University’s Mason cluster. The data staging was done by using the UNICORE'’s
GFFS extension that copies data from the file system space to the local job’s working
directory.

The identification of anomalies from the point cloud dataset is the main objective
of the clustering application. This requires to find an optimal set of application argu-
ments: MinPoints M, and epsilon (also called radius) e which influence the clustering
of new point cloud instances or different variants of the same data, respectively. In
terms of data mining this phase is called post-processing. The discovery of optimal
arguments is achieved by analyzing each of the completed job’s output which con-
tains the cluster distribution and noise factor. Within the output, the criterion is to
select the job configuration containing the minimum noise factor combined with the
best cluster distribution. The whole process of optimization requires multiple manual
runs of the same application but with different M and e values. In order to avoid
that users need to run these multiple jobs manually, the extended JSDL Parame-
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Clustering
Application

HPDBSCAN

<sweep:Sweep>
<sweep:DocumentNode> ..
<sweep:Match>//jsdl-posix:Argument[Se]</sweep:Match> </sweep:DocumentNode>
<sweepfunc:Looplnteger start = “280” end="320" step="10">
<sweep:Sweep> ..
<sweep:DocumentNode> ..
<sweep:Match>//jsdl-posix:Argument[SM]</sweep:Match> </sweep:DocumentNode>
<sweepfunc:Looplinteger start = “80” end="120" step="10">
</sweep:Sweep>
</sweep:Sweep>

Fia. 6.1. HPDBSCAN representation in the JSDL Parameter Sweep format depicting applica-
tion with arguments: epsilon (e) and MinPoints (M) sweeping through a range of values.

Access Mode / Execution Phase | Data Transfer Data Processing Post Processing
SCP, GridFTP, Jf)b seript for every Create script manually
Manual different resource .
BytelO, FTP for every variation
and batch system
Middleware Automated through the supported | One JSDL instance for fsol?gél}ilsg(li;ig téﬁﬁi&iio
(UNICORE & the GFFS) data transfer protocols all kind of backends variati;)zlz ied pa ’

TABLE 6.1
The user perspective of the Data analysis lifecycle using manual and automated mechanisms.

ter Sweep implementation which is provided by UNICORE’s execution back-end was
used. This allows using just a single job request which is not only more convenient
for the user, but also faster, reproducible and less error-prone. The parameter sweep
implementation serves the requirement R6-Parameter Sweep. Even though the user
submits only one job, multiple child jobs are automatically generated according to
the number of parameter iterations and nested sweeps. Figure 6.1 shows the sample
HPDBSCAN JSDL job description making use of the parameter. The sweep factor of
epsilon (e) and MinPoints (M) shown in Figure 6.1 will spawn 25 jobs in total with
each generating a separate output.

Table 6 summarize the steps user need to perform data analysis in manual (script-
based) and middleware-hosted environment. It is also evident from the illustration
that the use of JSDL and JSDL-PS is more intuitive and avoids a need to write custom
job requests for each flavor of the target resource management system. Furthermore,
the data transfer event here applies to the pre-execution and fetch outputs phase.

7. Related Work. In this section we present the related job execution middle-
ware technologies which are integrated with distributed file systems as well as work
related to DBSCAN.

GridFTP [31] is one of the major data transfer protocols used in today’s scientific
and commercial data infrastructures. Specifically, GlobusOnline [25] data transfer
service is mainly using this protocol to move data across widely distributed end-
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points. UNICORE’s GridFTP extension [7] helps scientists to submit job executions
on UNICORE and using GridF'TP-based data endpoints for data stagings. From the
implementation perspective, both the GridFTP and GFFS extensions are integrated
following the same approach, that is by using the XNJS programmatic interfaces. In
the case of GridFTP integration, the clients requiring UNICORE servers to perform
data staging on user’s behalf, need to send at least X.509 proxy certificate chain along
with the job submission request. For the GFFS the entities communicating the job
request to the server must send a set of SAML assertions.

The GlobusOuline [25] service is a web portal to help end users perform GridFTP
based high performance data transfers across different data endpoints. From the data
management aspect, GlobusOnline and the GFFS are sharing a common set of fea-
tures. By bridging the data access and processing (i.e. the job submission and ex-
ecution, and execution service mount-point) services simultaneously distinguish the
GFFS from GlobusOnline. The processing part is capable of attaching high perfor-
mance (Genesisll) and high throughput computing (UNICORE) in a standard way.
A very positive aspect of GlobusOnline is usability as it offers a ready to use data
transfer service through a common web brower, whereas the GFFS user interaction
is native desktop-based, which is not very intuitive and responsive as compare to
browser-based applications.

ARC [20] is a middleware suite used by high throughput computing communities.
ARC’s integration with [26] and DDM (Distributed Data Management) [13] solutions
are mostly used by the ATLAS [13] particle physics community at the Large Hadron
Collider. dCache and DDM are distributed data management platforms providing
storage and retrieval of huge amounts of data. dCache and the GFFS share mostly
the same set of scenarios, but the major difference is that the GFFS expose its interface
via RNS and BytelO, whereas dCache is accessed through the SRM [9] interface.

WS-PGRADE / gUSE (grid and cloud user support environment) [30] is an open
source scientific gateway framework that allows access to heterogeneous grid and cloud
resources. gUSE provides a client extension in the form of DCI bridge [1] to the GFFS
by invoking Genesis II clients. It is much similar to the way UNICORE integrates
the GFFS. The frame- work provides access to UNICORE and ARC job submission
services through the OGSA-BES interface.

In the context of worfklow (e.g. Taverna [38], Kepler [11], etc.) enabling data min-
ing methods on distributed computing infrastructures. Da Silva et al. [17] describe
workflows with serial implementation of DBSCAN. According to our understanding
their approach is not using the parallel DBSCAN implementation and in contrast
to our approach that is intended for production usage in a high performance com-
puting environment, the paper rather describes a research project than a production
implementation.

PDSDBSCAN-D [39] is an implementation of DBSCAN, based on the MPI and
OpenMP frameworks. According to [27] the HPDBSCAN application is more perfor-
mant on various earth science data sets, among which the points cloud data is one. It
performs better due to efficient pre-processing of spatial cells and use of density-based
chunking to balance the local computation load on each node. Furthermore, HPDB-
SCAN uses the HDF5 [4] data format to store data and uses its library for achieving
better parallel input and output performance.

8. Conclusion. In this paper, we have derived and implemented an integrated
architecture which covers a set of requirements for providing transparent, secure and
interoperable data processing tasks. Also provide these tasks access to the datasets
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managed by the Genesis II’'s Global Federated File System (GFFS). This is mainly
achieved by the technical integration of UNICORE and the GFFS. The most impor-
tant requirements are: R1 expresses a need for a secure trust delegation model, but
should be standards-based and extensible (R2). As part of the integration the GFFS
uses the SAML-based profile provided by the UNICORE’s execution service. On the
other hand, we extended UNICORE’s identity validation that understand the GFFS-
based requests containing multi-chain delegation assertions. R2 is also fulfilled by
having the standards-based job execution and data management interfaces through
the OGSA-BES and RNS specifications, respectively. The BytelO standard is used
to manage the data transport, thus the functionality implements R3.

While jobs are managed by UNICORE execution services, its internal service
implementation is taking care of any status update delays through time out based
probes against the target resource management system. In addition to that, the
execution service also handles gracefully if the parallel file system on which the job’s
working data is stored becomes temporarily unresponsive, quite normal in production
environment. The requirement R5 is served in this case.

For the Extensible resource and job model requirement R7, the resource model
of the OGSA-Basic Execution Service (BES) and Job Submission and Description
Language (JSDL) standards are extensible. But it will be only helpful if the compliant
implementations are with minimal effort supporting the standard-allowed extensions.
The technologies in our focus, UNICORE and the GFFS, are providing server and
client side APIs to easily extend the resource model. This feature will be much more
useful for community specific science gateways and next generation infrastructures
with varying requirements. The XSEDE infrastructure has been used to demonstrate
our implementation and data analysis excursion. This would require any technology
and users entering the domain of an infrastructure should abide by its security model
and its policies. With the GFF'S client and UNICORE-based server, we used XSEDE-
provided credentials to execute data processing jobs on a production deployment.

In our observation, most of the machine learning and data mining job submissions
are parametric in nature, thus they need to be running multiple times. UNICORE’s
standard-based parameter sweep implementation helps to support our point cloud
data clustering tasks. If we are able to represent the HPDBSCAN application re-
quirement through JSDL and its parameter sweep extension, then any other data
mining application can easily be supported. For the sake of implementation validity,
we are analysing other methods of data mining, for example classification algorithms.
One usability issue with the UNICORE’s parametric sweep implementation is to pro-
duce a single job output based on some user specified criteria, which is currently not
supported. The realization of this feature will reduce an overhead for data scientists
to manually sort and merge the resultant job outputs. We intend to support this
feature through a rule-based convergence of all the results from different parametric
jobs into a single meaningful output. Another useful aspect is to avoid submitting
multiple jobs to the batch system and rather use its internal feature of chaining mul-
tiple jobs. By enabling this feature the management and monitoring of complex job
composites can be much more intuitive and usable.
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