
Performance of Big Data versus High-
Performance Computing: Some Observations

Helmut Neukirchen

School of Engineering and Natural Sciences, University of Iceland, Reykjav́ık, Iceland
Email: helmut@hi.is

Abstract. The two prevalent paradigms for parallel processing are HPC
and the newer big data platforms. In addition to comparing their general
properties, a survey and run-time comparison of implementations of the
DBSCAN clustering algorithm for these two paradigms are provided.

Keywords: Big Data, High-Performance Computing, Benchmarking

1 Introduction

Computationally intensive simulations require parallel processing. The standard
technology for huge non-embarrassingly parallel, but rather tightly-coupled com-
putational problems is High-Performance Computing (HPC). Highly praised
contenders for huge parallel processing problems are big data processing frame-
works such as Apache Hadoop or Apache Spark. Hence, they might be consid-
ered an alternative to HPC for distributed simulations. To be able to decide
whether HPC or big data platforms are better suited for computationally in-
tensive problems, this paper gives a brief overview on these two paradigms and
their platforms and compares as main contribution their run-time performance
and scalability using as examples different implementations of the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm.

2 Paradigm shift: HPC versus Big Data

HPC is tailored to typically CPU-bound computationally expensive jobs. Hence,
rather expensive hardware is used, e.g. compute nodes containing fast CPUs in-
cluding many cores, very fast interconnects (e.g. InfiniBand) for communication
between nodes, and centralized Storage-Area Network (SAN) storage. To make
use of the many cores per CPU, shared-memory multi-threading based on Open
Multi-Processing (OpenMP) is applied. To make use of the many nodes con-
nected via the interconnects, an implementation of the Message Passing Inter-
face (MPI) is used. The underlying programming model is low-level, but allows
tightly-coupled parallel processing. Low-level, but fast programming languages
such as C, C++ and Fortran are used.

The big data paradigm is tailored to process huge amounts of data, how-
ever the actual computations to be performed on this data are often not that
computationally intensive. To achieve high-throughput, locality of data storage
is exploited by using distributed file systems storing locally on each node a
part of the data. The big data approach aims at doing computations on those



2 Helmut Neukirchen

Table 1. Run-time (in Seconds) vs. Number of Cores for 3 704 351 points

Number of cores 1 2 4 8 16 32

HPDBSCAN 114 59 30 16 8 6
PDSDBSCAN 288 162 106 90 85 88

ELKI 997 – – – – –
RDD-DBSCAN 7 311 3 521 1 994 1 219 889 832

nodes where the data is locally available. An example is Apache Hadoop which,
however, has the disadvantage that only the MapReduce paradigm is supported
which restricts the possible class of parallel algorithms and in particular may lead
to unnecessarily storing intermediate data on disk instead of allowing to keep it
in fast RAM. This weakness is overcome by Apache Spark [2] which is based on
Resilient Distributed Datasets (RDDs) which are able to store a whole data set
in RAM, distributed in partitions over the nodes of a cluster. While RDDs may
be kept in RAM, required data may not be available in the local RDD partition
of a node. In this case, it is necessary to re-distribute data between nodes. Such
shuffle operations are expensive, because slow network transfers are needed for
them. High-level programming languages such as Java, Scala or Python are used.

3 Run-time/Scalability of DBSCAN Implementations

To investigate the run-time performance and scalability of existing scientific
libraries (needed to ease building parallel applications, such as simulations) and
their underlying HPC or Spark platform, we surveyed and benchmarked parallel
open-source implementations of the the clustering algorithm DBSCAN [4]. The
underlying idea of DBSCAN is that for each data point, the neighbourhood
within a given eps radius has to contain at least a minpts points to form a cluster,
otherwise it is considered as noise. Depending on the implementation and the
size of eps in comparison to the size of the whole data, the time complexity is
O(n log n) to O(n2) with the latter leading to scalability problems for big data.

We found two open-source parallel DBSCAN implementations for HPC using
C++: PDSDBSCAN. [7] and HPDBSCAN [5]). The highly-optimized serial Java
implementation ELKI [9] was used as reference for the four parallel Scala/Java
Virtual Machine (JVM)-based open-source implementations we found for Spark:
Spark DBSCAN [6], RDD-DBSCAN [3], Spark DBSCAN [1], and DBSCAN On
Spark [8]. Results from running the first four implementations1 are shown in
Table 1. All measurements were performed on the same, identical cluster for
HPC and Spark using 3 704 351 2D geo-tagged tweets: except HPDBSCAN, none
of the implementations scaled well beyond 16 cores and in particular the RDD-
DBSCAN implementation for Spark was significantly slower.

To investigate performance on a bigger dataset using more cores, we clustered
16 602 137 geo-tagged tweets on several hundred cores (Table 2). Again, the
HPC implementation performed significantly better than the ones for Spark. As
these were already with a high number of cores very slow (RDD-DBSCAN with

1 For the latter three, no detailed experiments were made due to O(n2) complexity
(RDD-DBSCAN), being already extremely slow with 928 cores (Spark DBSCAN)
and providing in fact only an approximation of DBSCAN (DBSCAN on Spark).



Performance of Big Data versus High-Performance Computing 3

Table 2. Run-time (in Seconds) vs. Number of Cores for 16 602 137 points

Number of cores 1 384 768 928

HPBDBSCAN 2 079 10 8 –
ELKI 15 362 – – –

Spark DBSCAN – – – Exception
RDD-DBSCAN – – – 5 335

928 cores was only three times faster than ELKI using one core) or threw an
exception, we did not perform measurements with a lower number of cores.

4 Conclusions

In summary, none of the DBSCAN implementations for Apache Spark is any-
where near to the HPC implementations. It can be speculated that this is because
in HPC, parallelization needs to manually implemented and thus gets more at-
tention in contrast to the high-level big data approaches where the developer gets
not in touch with parallelization. Another reason to prefer HPC for compute-
intensive simulations is that already based on the used programming languages,
run-time performance of the JVM-based Spark platform can be expected to be
one order of magnitude slower than C/C++ (compare ELKI vs. HPDBSCAN).
While RDDs support a bigger class of non-embarrassingly parallel problems than
MapReduce, Spark still does not support as tight-coupling as OpenMP and MPI
used in HPC – which might however be required for simulations. On the other
hand, due to the high-level programming languages such as Scala and the fact
that Spark code can be written like serial code without having to care about
parallelization, considerably less implementation efforts can be expected when
using Spark. Also, in contrast to HPC where no fault tolerance is included (a
single failure on one of the many cores will cause the whole HPC job to fail),
the big data platforms have the advantage of being are fault-tolerant. Finally,
the commodity hardware typically used as big data platform is cheaper.

References

1. aizook: Spark DBSCAN source code. GitHub repository (2014), https://github.
com/aizook/SparkAI

2. Apache Software Foundation: Apache Spark (2016), http://spark.apache.org/
3. Cordova, I., Moh, T.S.: DBSCAN on Resilient Distributed Datasets. In: 2015 Int.

Conf. on High Performance Computing & Simulation (HPCS). IEEE (2015)
4. Ester, M., et al.: Density-based spatial clustering of applications with noise. In:

Proc. of the 2nd Int. Conf. on Knowl. Discovery and Data Mining. AAAI (1996)
5. Götz, M., et al.: HPDBSCAN: highly parallel DBSCAN. In: Proc. of the Workshop

on Machine Learning in High-Performance Computing Environments. ACM (2015)
6. Litouka, A.: Spark DBSCAN source code. GitHub repository (2014), https://

github.com/alitouka/spark_dbscan
7. Patwary, M.M.A., et al.: A new scalable parallel DBSCAN algorithm using the

disjoint-set data structure. In: Supercomputing (SC2012). IEEE (2012)
8. Raad, M.: DBSCAN On Spark source code. GitHub repository (2016), https://

github.com/mraad/dbscan-spark
9. Schubert, E., et al.: A framework for clustering uncertain data. PVLDB 8(12), 1976–

1979 (2015)

https://github.com/aizook/SparkAI
https://github.com/aizook/SparkAI
http://spark.apache.org/
https://github.com/alitouka/spark_dbscan
https://github.com/alitouka/spark_dbscan
https://github.com/mraad/dbscan-spark
https://github.com/mraad/dbscan-spark

	Performance of Big Data versus High- Performance Computing: Some Observations
	Introduction
	Paradigm shift: HPC versus Big Data 
	Run-time/Scalability of DBSCAN Implementations
	Conclusions


