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ABSTRACT

The DEEP-EST (DEEP – Extreme Scale Technologies)
project designs and creates a Modular Supercomputer Ar-
chitecture (MSA) whereby each module has different char-
acteristics to serve as blueprint for future exascale systems.
The design of these modules is driven by scientific applica-
tions from different domains that take advantage of a wide
variety of different functionalities and technologies in High-
Performance Computing (HPC) systems today. In this con-
text, this paper focuses on machine learning in the remote
sensing application domain but uses methods like Support
Vector Machines (SVMs) that are also used in life sciences
and other scientific fields. One of the challenges in remote
sensing is to classify land cover into distinct classes based
on multi-spectral or hyper-spectral datasets obtained from
airborne and satellite sensors. The paper therefore describes
how several of the innovative DEEP-EST modules are co-
designed by this particular application and subsequently used
in order to not only improve the performance of the appli-
cation but also the utilization of the next generation of HPC
systems. The paper results show that the different phases of
the classification technique (i.e. training, model generation
and storing, testing, etc.) can be nicely distributed across the
various cluster modules and thus leverage unique functional-
ity such as the Network Attached Memory (NAM).

Index Terms— High-Performance Computing (HPC),
Exascale Computing, Network Attached Memory (NAM),
Support Vector Machines (SVMs), Remote Sensing

1. INTRODUCTION

Traditional High-Performance Computing (HPC) systems
have been mainly designed for scientific and engineering ap-
plications that often are based on numerical methods using
known physical laws. Those class of applications are of-
ten summarized under the term ’simulation sciences’ but are
partly different from purely data-driven applications known
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as ’data sciences’ today. Those latter applications use par-
allel and scalable machine learning methods, data mining
algorithms, or statistical approaches in order to automatically
discover information in large datasets (i.e. ’big data’), ideally
following a systematic process such as the Cross-Industry
Standard Process for Data Mining (CRISP-DM) [1]. As a
consequence, current HPC systems design needs to support a
much broader range of application requirements in order to
enable performance improvements.

Another change in HPC systems design is driven by the
ever expanding set of parallel technology hardware that be-
comes available such as a wide range of accelerator technolo-
gies like NVIDIA, General-Purpose computing on Graphics
Processing Units (GPGPUs), or innovative memory technolo-
gies. While many paper contributions purely focus on the
evolution of using particularly GPGPUs and accelerators in
general in applications, there is less focus on innovative mem-
ory technologies that have very interesting capabilities espe-
cially when considering data-driven applications.

This paper, therefore, describes key approaches of us-
ing the innovative Network Attached Memory (NAM) [2, 3]
from the HPC hardware manufacturer EXTOLL in a real
data-driven application that employs machine learning algo-
rithms that are used in a wide variety of applications, such as
in the realm of life or earth sciences. The particular machine
learning algorithm used to drive the HPC system co-design
using the aforementioned NAM are Support Vector Ma-
chines (SVMs) [4] in the application field of remote sensing,
but SVMs and their usage of the NAM are applicable to other
application domains in the same way. The results of this pa-
per have been implemented as part of the European Union’s
Horizon 2020 exascale project Dynamical Exascale Entry
Platform – Extreme Scale Technologies (DEEP-EST) [5] and
its HPC system prototypes that beside the NAM also offers
other innovative modules.

The remainder of the paper is structured as follows. Fol-
lowing this introduction, Section 2 describes the technology
background in the realm of the DEEP-EST project such as
its various modules while Section 2 also includes a brief in-
troduction to machine learning with a particular focus on the
SVM technique. Section 3 describes the application problem
domain and its need for parallel and scalable SVM implemen-



tations on HPC systems. Afterwards, Section 4 technically
describes how the NAM module and our SVM implementa-
tion in combination with other innovative DEEP-EST mod-
ules is particularly useful to improve application performance
and HPC system utilization. The paper concludes with a sum-
mary and outline of future work.

2. BACKGROUND

This section provides a short background on machine learning
and the various DEEP-EST hardware accelerator modules.

2.1. Machine Learning with Support Vector Machines

Machine learning techniques are used in a process of automat-
ically discovering useful information or specific patterns in
large datasets. We thus assume a pattern to be detected in the
data and there is no mathematical formula or known physical
law (cf. simulation sciences) that can be directly implemented
to find those patterns with an analytic solution. Instead, the
focus on the dataset in question itself in order to discover the
pattern with learning methods such as classification and clus-
tering algorithms or regression methods.

The contributions of this paper are based on supervised
learning using classification whereby groups of data already
exist with labeled group identity and new data points are clas-
sified to those existing groups based on a learned classifica-
tion model. In more detail, this learning process essentially
follows the following three steps: (i) training, (ii) model gen-
eration and storing, and (iii) testing. We describe these three
rather general classification steps in the context of a concrete
model called Support Vector Machines (SVMs) [4], but they
are valid for any other classification technique such as Ran-
dom Forests (RFs), Artificial Neural Networks (ANNs), or,
more recently, deep learning networks such as Convolutional
Neural Networks (CNNs).

The (i) training process uses training data with a machine
learning algorithm is often based on constrained optimization
techniques that are solved with quadratic programming and
sequential minimal optimization (SMO) in the case of SVMs.
These computational demanding optimization techniques do
not scale well and thus usually require a CPU with high single
thread performance in order to perform proper model training
and reach convergence in a reasonable amount of time. The
result of step (i) is a model that was trained with a particular
setup with respect to training parameters (e.g. regularization
parameter C in SVMs) or the use of a kernel like Radial Basis
Functions (RBFs).

In step (ii), the trained model from step (i) needs to be
generated in a specific model format (i.e. SVM model file)
and stored as a file, or transferred in some other way, to reach
step (iii). The specific property of the particular step rele-
vant for this paper (ii) is that the SVM model consists of an
’in-sample’ property meaning that the support vectors [4] that

support the decision surface to separate datasets of different
classes is also part of the dataset. Hence, there is a likeli-
hood that the bigger the dataset, the more support vectors are
needed; as a consequence, the model file is getting larger,
too. Thus dropping the model file to storage after step (i)
in step (ii) to be loaded by step (iii) is something we refer to
as ’model storage bottleneck’ that is later addressed in this
paper.

In order to predict new data items in step (iii) based on
the model, the model file from step (ii) is again loaded into
memory from file in the above case and used for inference.
This prediction step is called testing and uses its own dataset
or, when model building is finished, represents the way how
a model is used in a final model deployment in daily appli-
cations. In contrast to step (i), the computational needs for
step (iii) and its nature of inference is a process that requires
only moderate CPU power. Finally, due to the page restriction
of the paper, we can not go into details for another important
element of the machine learning process that is validation that
in turn is also used in conjunction with regularization tech-
niques to combat overfitting.

2.2. Innovative DEEP-EST Modules

The DEEP-EST project [5] performs research in new HPC
system architectures using innovative hardware co-designed
by a wide variety of applications. One of the research out-
come of the DEEP-EST project is the creation and exploration
of the Modular Supercomputer Architecture (MSA) [6] that in
turn is adopted by the Jülich Supercomputing Centre (JSC) in
Germany for production end users. The MSA is illustrated
in Fig. 1 and consists of various modules with different HPC
hardware characteristics in order to support different work-
loads of applications on one overarching HPC system. Each
MSA module is tailored to fit the needs of a specific set of
computations, storage, or communication tasks with the goal
of reaching exascale performance, which is unlikely to be
achieved using traditional and rather static non-accelerated
HPC system designs with CPUs, storage, memory, and in-
terconnects.

The Cluster Module (CM) offers a module with powerful
Cluster Nodes (CNs) which consist of multi-core CPUs that
offer fast single-thread performance and therefore makes is
suitable for applications that are very computationally expen-
sive. It offers a good amount of memory but enables only lim-
ited scalability being highly interconnected within the module
itself but also to other modules using the Network Federa-
tion (FN).

In contrast to the multi-core CM module, the Extreme
Scale Booster (ESB) module [6] is a manycore system for
highly scalable application workloads whereby each of the
many CPU cores in the system offers only moderate perfor-
mance. As shown in Fig. 1, the ESB module also includes
the Global Collective Engine (GCE) integrated in its net-



Fig. 1. Utilizing the Modular supercomputer Architecture (MSA) for machine learning algorithms like Support Vector Machines

work fabric that leverages a Field-Programmable Gate ar-
ray (FPGA) in order to speed-up common Message Passing
Interface (MPI) collective operations in hardware such as
MPI reduce operations.

The Data Analytics Module (DAM) offers accelerators
like GPGPUs which are particularly useful for deep learning
algorithms. Furthermore, the Scalable Storage Service Mod-
ule (SSSM) offers a high capacity in storage using underlying
parallel file system technologies, such as Lustre or the Gen-
eral Parallel File System (GPFS) from IBM at JSC. Finally,
the NAM module [2, 3] is a special module that is the key
focus of this paper and described in more detail in Section 4.

3. PARALLEL AND SCALABLE SVMS IN REMOTE
SENSING USING DEEP-EST PLATFORM

This section describes our application and how we map it to
the MSA of the DEEP-EST platform.

3.1. Parallel and Scalable Application Demands

The remote sensing application dataset used in this paper is
the Indian Pines AVIRIS dataset [7] over an agricultural site
composed of agricultural fields with regular geometry (200
spectral bands, 1417x617 pixels, spatial resolution of 20 me-
ter, 52 classes of different land cover). Before the above
phases of classification are performed the raw hyper-spectral
data is used with feature engineering, which in this case is the
Self-Dual Attribute Profile (SDAP) [8].

Progress in sensor technology leads to an ever-increasing
amount of data which needs to be classified in order to extract
information. This big amount of data requires parallel pro-

cessing by running parallel and scalable implementations of
classification algorithms such as the SVM introduced above
on HPC systems. This paper uses our parallel and scalable
PiSvM [9] that scales well across a large amount of CPUs
and is an improved version of the original πSvM [10] imple-
mentation. As shown in Cavallaro et al. [11] this optimized
version offers a good classification accuracy while at the same
time being more efficient in using the MPI standard for paral-
lel processing in HPC clusters enabling a speed-up for remote
sensing applications.

3.2. Parallel Training and Model File Generation

The (i) training phase feeds the pre-processed remote sensing
training data into the SVM algorithm which in turn calculates
data-space coefficients using a particular set of hyper parame-
ters. These coefficients identify support vectors that can then
implicitly be used to classify arbitrary input data (e.g., new
acquired hyper-spectral images) via a generated SVM model
classifier.

In order to speed-up the (i) training phase outlined above,
we use our parallel pisvm-train executable that in turn
is based on the serial de-facto standard implementation lib-
SVM [12]. As the optimization algorithm implementations
that are part of the inherent libSVM are very computational
demanding, it makes sense to use the DEEP-EST CM for the
(i) training phase. This executable takes as input, alongside
the training dataset location, several parameters related to the
precise type of SVM to be used as they can also be used for
regression. Another parameter for this executable is the type
of the kernel function to be used in training and its associated
parameters like gamma in the case of the RBF kernel.



The implementation of pisvm-train is executed on
the DEEP-EST CM using a typical scheduler batch script for
parallel processing. According to phase (ii) model file gen-
eration and storage, the parallel computing job on the CM
creates an SVM model on the parallel file system to be used
by step (iii).

The PiSvM implementation from [9] uses non-optimized
POSIX I/O for file handling. Our porting to the DEEP-EST
MSA involves using MPI parallel I/O for for reading the ini-
tial input and writing the final output. Passing the interme-
diate data between the different steps and their executables
is performed in a highly optimized way using the NAM as
discussed in Section 4.

3.3. Use of the SVM Model File in Parallel Prediction

In the (iii) testing phase, we use the generated model file
as input parameter alongside a test dataset location for the
pisvm-predict executable that is used for prediction.
The goal of this phase is to evaluate the SVM classifier’s
accuracy by comparing its output for a specifically selected
testing dataset of input data with a correct classifications
known beforehand and not used during the (i) training phase.
This rather embarassingly parallel process is highly scalable
and thus well suited for the DEEP-EST ESB module.

4. IMPLEMENTATION USING NAM

The preceding Section 3 outlined the standard use of the
DEEP-EST modules with POSIX file I/O or potentially MPI
parallel I/O for the involved file accesses. However, we
observe a limitation in always storing an SVM model as a
normal file during the phase (ii) model file generation and
storage as performed by the executable pisvm-train and
reading it again in as normal file in the subsequent phase by
the executable pisvm-predict. This section describes
how the NAM DEEP-EST module can be exploited in order
to avoid this ’model storage bottleneck’ which can be severe
because SVM models tend to be very large.

4.1. Proposed Methodology

We exploit the MSA to enhance the training and testing phase
of our PiSvM implementation focusing on the speed-up the
NAM offers as an intermediary model storage target between
the training and evaluation steps of the two involved PiSvM
executables. This is depicted in Fig. 1 with the following de-
scription of the steps marked in the figure with circles: (1) The
remote sensing training and testing datasets are loaded into
the NAM module, this reduces latency and bandwidth re-
strictions, compared with the standard storage module, when
data is accessed; (2) Training a model is computationally ex-
pensive due to the inherent convergence process executed by
PiSvM, it is therefore best suited for the DEEP-EST CM,

Fig. 2. NAM hardware architecture [3]

which offers the most powerful CPUs as discussed in Sec-
tion 3.2; (3) The trained model is placed in the NAM module
to speed-up access to it during the evaluation step, where the
model is evaluated using another dataset; (4) The model is
loaded from the NAM and its accuracy is evaluated. This is
an embarrassingly parallel operation which is therefore best
suited to take advantage of the ESB module that has the high-
est number of CPUs as discussed in Section 3.3.

4.2. NAM Overview

The Network Attached Memory (NAM) is a device that can
be described as a module which exists in the fast fabric in-
terconnection between all other modules within the hetero-
geneous system. It has non-volatile high-performance RAM
which makes it extremely suitable for the role as a “faster than
SSD” intermediary storage. Furthermore, it also has an FPGA
integrated on its board that applications can utilize to perform
near-data processing, independent and parallel to other mod-
ules, on data stored in the NAM

Additional important use for the NAM is fast checkpoint-
ing [2] to improve the application’s fault-tolerance, or model-
selection, using inference to organize a set of trained models
which can then used for transfer learning [13]. In this paper,
however, we focus on its role as a fast storage target used by
the PiSvM application for I/O performance gains.

4.3. NAM Architecture

The NAM hardware architecture, as depicted in Fig. 2, con-
sists of a PCI-Express form factor card that is equipped with
a Xilinx Virtex7 FPGA and Micron’s Hybrid Memory Cube
(HMC), which is a very fast DRAM stacked in 3D with inte-
grated memory controllers. Multiple HMCs can be connected
together using the HMC chain connector to extend the NAM’s
fast memory capacity. Finally, the NAM is accessible over the



high-bandwidth and low-latency EXTOLL network1 via the
HDI-6 connector depicted in Fig. 2

4.4. libNAM

The libNAM library [14], written in C, provides the API
that developers need to use the NAM for their applications
in DEEP-EST. Its API is modeled after the proprietary EX-
TOLL RMA API and its current implementation is indeed
built on top of the same API, effectively limiting its usage to
EXTOLL fabric interconnects at the moment. The usage of
this API for speeding up PiSvM is described in the following
two sections.

4.5. Using NAM for Training

Near the end of its execution, the training step of PiSvM has
generated a model which can be used to classify unseen data
in the prediction step. The model, however, must first be
stored in the NAM where it can subsequently be accessed in
the prediction step. This is demonstrated by the code snip-
pet below: first, the NAM is initialized and then the fitting
memory allocation is requested from it; thereafter the model
is written into the allocation, and finally, a metadata file de-
scribing the allocation is produced.

#include <stdio.h>
#include "nam_util.h"

void saveModelNAM(Model* trained, char* path) {
m_size = sizeof(trained);
nam_initialize();
nam_alloc = nam_malloc(m_size);
nam_put(nam_alloc, trained);
nam_write_metadata(nam_alloc, path);

}

Code Snippet 1. Storing the trained model in NAM

Note that nam_put in the above Code Snippet 1 stores
the actual data whereas nam_write_metadata saves the
allocation’s metadata to a standard HPC file system with the
given path using standard POSIX file I/O. The metadata in-
cludes the location and size of an allocation which enables
other applications to access its underlying data on the NAM,
as can be seen in the code snippet in the next section.

4.6. Using NAM for Prediction

A generated model must be evaluated to make inferences
about its accuracy and suitability. The evaluation step loads
the model from the NAM, as demonstrated by Code Snip-
pet 2: first, the NAM is initialized, followed by the loading of
metadata file from the standard HPC file system. The meta-
data contains the necessary information about the allocation

1http://www.extoll.de

made during the training step which enables the NAM API to
load its contents, i.e. the model.

#include "nam_util.h"

Model* loadModelNAM(char* path) {}
nam_initialize();
nam_alloc = nam_read_metadata(path);
model = nam_get(nam_alloc);
return model;

}

Code Snippet 2. Model loaded from the NAM and evaluated

Using the same metadata file allows the PiSvM executa-
bles pisvm-train and pisvm-predict to exchange the
model data in an extremely efficient way and thus minimizes
idle processes by reducing waiting for I/O to complete.

5. SUMMARY AND OUTLOOK

We presented the Dynamical Exascale Entry Platform – Ex-
treme Scale Technologies (DEEP-EST) Modular Supercom-
puter Architecture (MSA) which is heavily based on hard-
ware acceleration for all parts of an HPC system, i.e. not only
computation, but also storage/memory and interconnects.
These accelerated hardware modules are intended to serve as
blueprints for tailoring future HPC systems towards exascale
driven by the needs of the particular applications.

Our application that drives the co-design of the DEEP-EST
MSA is parallel and scalable machine learning on huge
datasets which includes deep learning [13], clustering [15],
and classification. For the latter, we use Support Vector Ma-
chines (SVMs) that are mapped on the hardware modules
of the MSA as described in this paper: wherever possi-
ble, the benefits of these hardware accelerator modules are
leveraged: massively parallel manycore processing of em-
barrassingly parallel processes is performed on the Extreme
Scale Booster (ESB), whereas tasks that do not scale well
are executed on the high-performance Cluster Module (CM),
frequently used data is stored in the Network Attached Mem-
ory (NAM) including near-data processing via FPGA. This
all is facilitated by a fast fabric interconnection and the Global
Collective Engine (GCE) for MPI collective operations.

The focus of this paper is on exploiting the Network At-
tached Memory (NAM) for storing intermediate results of the
different steps of an SVM classification chain, e.g: a model
is trained and then its prediction accuracy is evaluated by an-
other executable, i.e. the learned model needs to be stored
persistently between runs of different executables. By using
the fast NAM hardware and NAM API instead of the com-
parably slower Scalable Storage Service Module (SSSM) and
standard POSIX I/O, a considerable speed-up of I/O is possi-
ble. In addition to using the NAM for intermediate data, using
MPI parallel I/O for reading the initial input and writing the fi-
nal output allows further I/O improvement. The potential for



speed-up using the NAM has been identified by tracing the
initial PiSvM implementation which gave valuable insights
concerning idle hardware due to inefficient I/O and load im-
balances that we mitigate with our approach.

The described accelerator modules are currently being de-
veloped as part of the DEEP-EST project and are still subject
to change. For example, the current NAM prototype will be
replaced within the life-span of the DEEP-EST project with
an improved device that includes a more powerful FPGA, at
least 128 GB of RAM, and much higher bandwidth. Because
the hardware and its corresponding API implementation are
not yet stable, we can currently not yet provide benchmark-
ing results, but the first preliminary runs of our parallel PiSvM
chain on the draft prototype hardware are very promising.

Future work, outside of porting our PiSvM implementa-
tion to the final DEEP-EST hardware, includes improving the
scalability of parallel SVMs even further: we have started to
implement the Cascade SVM approach where a dataset is split
and then optimized separately using multiple SVMs; the sub-
results are finally combined again in a cascade of SVMs until
the global optimum is reached [16].

Finally, we have started to investigate an alternative to us-
ing SVMs for hyperspectral image classification by applying
deep learning with CNNs: first results look promising [17]
and we intend to investigate its scalability on the DEEP-EST
platform.
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