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ABSTRACT

The implementation of efficient remote sensing workflows is
essential to improve the access to and analysis of the vast
amount of sensed data and to provide decision-makers with
clear, timely, and useful information. The Dynamical Ex-
ascale Entry Platform (DEEP) is an European pre-exascale
platform that incorporates heterogeneous High-Performance
Computing (HPC) systems, i.e., hardware modules which in-
clude specialised accelerators. This paper demonstrates the
potential of such diverse modules for the deployment of re-
mote sensing data workflows that include diverse process-
ing tasks. Particular focus is put on pipelines which can use
the Network Attached Memory (NAM), which is a novel su-
percomputer module that allows near processing and/or fast
shared storage of big remote sensing datasets.

Index Terms— Remote Sensing, Modular Supercomput-
ing Architecture (MSA), Network Attached Memory (NAM),
High-Performance Computing (HPC), hardware accelerators

1. INTRODUCTION

The continuous developments of remote sensing platforms
and sensor technologies combined with the open and free
data policy of Earth Observation (EO) programs is generat-
ing an unprecedented volume and variety of raw data [1].
Copernicus, with its fleet of Sentinel satellites, is the world’s
largest single EO programme. For example, the two twin
satellites Sentinel 2A and 2B deliver 23 TB/day of multispec-
tral data. Whilst previously the major issue for researchers
has been the identification of accessible remote sensing data
sources, nowadays the main issue is how to make the process-
ing of this vast abundance of open data scalable [2]. In 2017,
the Sentinel Data Access System experienced a publication
rate of 10.04 TB/day with an average download volume of
93.5 TB/day'. Due to the insufficient memory size and num-
ber of cores available in commodity computers on the one
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hand and on the other hand the increasing number of appli-
cations that require data computing in near real time (i.e.,
supporting decision-makers), remote sensing data process-
ing pipelines necessitate the use of parallel algorithms that
can run and scale on High-Performance Computing (HPC)
systems with distributed memory [3].

Lately, several distributed architectures have been devel-
oped to make HPC computing available for remote sensing
including cloud-based systems [4], Message Passing Inter-
face (MPI) systems [5], and Map-Reduce systems [6]. In
this context, high-end HPC clusters, that currently reach per-
formance in the order of petaflops (i.e., 10'° floating point
operations per second), are already delivering unprecedented
breakthroughs [7]. However, emerging machine learning and
deep learning algorithms are transforming the workloads that
are run on HPC systems, with the need for higher memory,
storage, and networking capabilities, as well as optimized
software and libraries to deliver the required performance.
Thus, tomorrow’s HPC has to provide heterogeneous hard-
ware accelerators and software technologies within the same
architecture in order to cover both the needs of classic HPC
simulations and of novel data analytics applications.

While Erlingsson et al. [8] already described a strategy
for mapping the different phases of a Support Vector Machine
(SVM) classifier to the most suitable accelerator modules of
the Modular Supercomputer Architecture (MSA), the role of
the Network Attached Memory (NAM) module?, which is one
key innovative element of the MSA, has so far only been par-
tially investigated.

This paper focuses therefore in particular on the NAM
and its benefits within more general remote sensing data pro-
cessing workflows. The NAM is a high-speed, non-volatile,
network-accessible storage with built-in processing capabil-
ities that is designed for storage of calculations, data, and
other operations in progress (e.g., scratchpad or checkpoint-
restart space). We describe an experiment for writing and
reading tasks using two NAM hardware prototypes. The re-
sults demonstrate the efficiency of this module and its poten-
tial for performing processing and fast shared storage opera-
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Fig. 1. The Modular Supercomputer Architecture (MSA) un-
der development in the DEEP-EST research project.

tions on data within a certain size limit (see Section 3). Based
on this preliminary results, it can be expected that the forth-
coming version of the NAM will be able to cope with opera-
tions performed on much larger remote sensing data.

2. MODULAR SUPERCOMPUTING
ARCHITECTURE

2.1. Dynamical Exascale Entry Platform

The Dynamical Exascale Entry Platform — Extreme Scale
Technologies (DEEP-EST) project? is the third pre-exascale
research project in its series, following the Dynamical Ex-
ascale Entry Platforms DEEP and DEEP-ER, being funded
by the European Union. The Modular Supercomputer Ar-
chitecture (MSA) [9] is an innovative HPC architecture that
has been developed in the project. It integrates an arbitrary
number of modules of heterogeneous hardware components,
in particular specialised hardware accelerators. The aggrega-
tion of these modules within the same architecture forms the
blueprint for future exascale and energy efficient computing
systems. Each module of the MSA is custom-built to meet
the requirements of a specific set of computation, storage,
or communication tasks within a processing pipeline. This
includes remote sensing workflows.

3https://www.deep-est.eu/

2.2. Co-Design of Hardware for Remote Sensing Data

A typical remote sensing workflow starts with data acquisi-
tion from a set of sensors and ends with the provision of
valuable information to a given thematic application. Such
a workflow is usually both data and compute intensive since
it is not only challenged by the increasing volume and vari-
ety of the data but also by the high computational complex-
ity of many data mining algorithms. When considering pre-
processing and information extraction tasks (e.g., clustering,
classification, etc.) that adopt either classical machine learn-
ing algorithms or more advanced deep learning methods, one
of the main challenge is to make them exploit parallel com-
puting systems efficiently. In the context of the DEEP-EST
project, this is tackled by a co-design approach, i.e. the MSA
hardware and system software are designed to match the re-
quirements of the targeted scientific applications. The ex-
pected outcome is an efficient assignment of heterogeneous
processing tasks to the most suitable modules of the MSA.
The MSA modules (cf. Fig. 1) support the different parts of a
remote sensing workflow as follows:

The Cluster Module (CM) includes the fastest Central
Processing Units (CPUs), which makes it suitable for tasks
that are the most computationally expensive but with lim-
ited scalability (e.g., classification algorithms with elevated
complexity that can be performed with high single-thread
performance).

On the other hand, the Extreme Scale Booster (ESB) [9]
module can be described as putting emphasis on scaling par-
allel tasks. It consists of many powerful Graphics Processing
Unit (GPU) accelerators where a GPU is coupled to a rather
weak host CPUs (i.e. low performance and lower amounts of
memory) in a node: these CPUs are only needed for offload-
ing communication with other ESB nodes and/or enabling
I/0O. In terms of memory, the ESB will take advantage mostly
of the fast GPU RAM and will perform communication via
GPUDirect to other accelerators to avoid the bottleneck of the
host CPU memory. The performance scalability that can be
achieved in the DEEP-EST ESB is expected to be higher than
the one thatcan be reached using standard technologies such
as NVlink or NVSwitch®. In fact, the process of scaling is not
restricted to the GPUs within a node, but occurs also across
nodes (i.e., availability of a higher number of accelerators that
are efficiently interconnected). This is an important factor
when deep learning algorithms are applied in remote sensing,
since large size datasets (e.g., Sentinel 2 data) require scaling
beyond the single node especially when large-scale inference
operations are performed.

The ESB also integrates in its fast interconnection net-
work federation fabric the Global Collective Engine (GCE)
that is an accelerator for speeding-up Message Passing Inter-
face (MPI) collective operations in hardware, e.g., summing
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up values transmitted in MPI messages.

While the Data Analytics Module (DAM) consists of
many GPU accelerators just like the ESB module, it dif-
fers from the ESB in having more powerful CPUs, more
RAM, fast local non-volatile memory, and allowing extra-
acceleration via Field-Programmable Gate arrays (FPGAs).
The DAM serves the purpose of enabling data-intensive com-
puting that requires large memory capacity (e.g., store huge
amounts of weights and activations of deep networks). The
DAM enables also more complex workflows that can benefit
in addition to the GPUs from the more powerful CPUs than
those available in the ESB nodes.

The Network Attached Memory (NAM) and the Scalable
Storage Service Module (SSSM) are two further modules that
are included in the MSA. They are described in more details
in the next section.

3. NETWORK ATTACHED MEMORY MODULE

3.1. NAM Introduction

Performance slowdown due to frequent and/or slow storage
access is a known problem in contemporary super-computing.
Big data sets are usually stored in a centralized storage mod-
ule, such as the Scalable Storage Service Module (SSSM)
This module is usually located in a separate chassis, physi-
cally separate from the computing nodes which —despite fast
interconnects— slows down data access speed due to latency.
To mitigate this problem it is common practice to include ad-
ditional storage directly in each chassis, such as a local Solid
State Drives (SSDs). However, this is not sufficient when
dealing with truly big data, or data that has to be continuously
shared among different modules and/or nodes.

The NAM module [10] addresses this problem by serv-
ing as an extremely fast storage target using a Hybrid Mem-
ory Cube (HMC) that is directly fused with the fabric itself,
close to the computational nodes. (HMC is a new class of
non-volatile memory, approx. 1000 times faster than SSDs.)
Furthermore, the NAM is equipped with an FPGA which can
be used as an accelerator for fast near-data processing.

3.2. NAM: Preliminary Results

To investigate the benefits of using the NAM module within
a processing workflow, experiments were conducted on lim-
ited hardware prototypes since at the time of writing, the final
MSA is still being built, including a future, improved NAM.
An evaluation of two of these NAM prototypes was per-
formed by using them as storage targets of 4 GB capacity,
with a maximum capacity of 2 GB available for each proto-
type. Figure 2 depicts the read and write throughput of the
NAM compared to the BeeGFS parallel file system® that ac-
cesses a remote file server. In both cases, the experiments

Shttps://www.beegfs.io/content/

T T TTTTI T T 11T T T TTTI T T 111 XTI T T T T T 171
6,000 + \ .
~~
<
E _u
< 4,000 ¢ ~
-
=
(=¥
=
on
=
e}
= —s— NAM - read
& 2,000 |- —s— NAM - write
BeeGFS - read
BeeGFS - write
O_A_UL‘L\*LL o B s o T R R R N1 B B I W N1 T1 R

10*  10° 105 107 10% 107
Data size (Byte)

Fig. 2. I/O throughput comparison between the NAM and the
BeeGFS parallel file system.

were performed using the same nodes of the DEEP-ER su-
percomputer. It should be noted that it was not possible to
fully bypass the use of caching for BeeGFS read operations
as only the local operating system honored the request to dis-
able caching, but not necessarily other parts of the BeeGFS
chain. Therefore, since the displayed throughput is the result
of multiple read operations that are averaged using the same
set of files, the BeeGFS read measurements are in fact far too
optimistic and the true read performance can be considered to
be slower by an unknown extent. However, this not the case
for the file system write operations, which were successfully
measured while completely bypassing the use of caching.

As Figure 2 shows, the NAM throughput is significantly
better, in particular with respect to write operations, but even
still outperforming the file system with caching when reading
files up to 16 MB in size. The NAM performance slump dur-
ing read operations is due to an internal buffer of the same
size: after this buffer has been filled, further buffers must
be allocated, which negatively affects the overall read per-
formance. However, more allocations do not slow down the
performance any further.

These results show the potential of using the NAM as a
storage target rather than the standard file system. For the
given prototype, this applies especially for data smaller than
32 MB, which is, e.g., suitable for computer vision applica-
tions using batches of multi-spectral remote sensing data to
train deep learning networks. For the forthcoming DEEP-
EST NAM, however, the results are expected to vastly im-
prove once hardware and software problems encountered with
the prototype are resolved. It is expected that a production
ready NAM will produce a throughput of over 10 GB a sec-
ond as it will, among other improvements, double the number
of interconnect links. Furthermore, its HMC storage capacity
is extended to 128 GB, with an additional (but slower) flash



memory that offers storage in the Terabyte range.

The potential of the NAM was also confirmed by evaluat-
ing the prototype with checkpointing code routines from the
1libNAM library®, which produced results that were consistent
to the graph in Fig. 2. The usage of checkpointing increases
application robustness by allowing them to resume from a cer-
tain execution snapshot (checkpoint) instead of having to start
over if the application terminates unexpectedly. For check-
pointing, the NAM’s FPGA is also utilized to perform parity
checkpointing on the NAM rather than on a compute node.

Preliminary results indicate that workflows that process
big remote sensing data will benefit from the NAM, espe-
cially when considering that remote sensing data are often
multi-modal, e.g. from optical (multi- and hyperspectral) and
synthetic aperture radar (SAR), which require ensembles of
machine learning and/or deep learning models to combine and
fuse them. The forthcoming NAM, with increased through-
put, local computational ability, and massive storage capabil-
ity, will be able to process several intermediate multi-modal
learning models simultaneously and boost the whole process-
ing pipeline.

4. CONCLUSIONS

This paper described the potential of the accelerators of the
Modular Supercomputer Architecture (MSA) that can be tai-
lored to specific applications, such as for realising scalable
remote sensing data processing workflows. Since the MSA
is under development, only preliminary results were provided
for using the Network Attached Memory (NAM) module as a
very fast remote storage that can be shared between nodes of
an HPC cluster, e.g. for passing data from one stage of a work-
flow to the next stage. The throughput of the NAM prototype
is impressive and was only topped by a remote file system
due to caching of previously read data. The final NAM ver-
sion is expected to perform even better. It will have a larger
storage capacity and thus allows remote sensing workflows to
store, e.g. intermediate machine learning model data in order
to speed up, e.g., scalable SVMs on the MSA [8].
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