
ACCELERATING HYPERPARAMETER TUNING OF A DEEP LEARNING MODEL
FOR REMOTE SENSING IMAGE CLASSIFICATION

Marcel Aach1,2, Rocco Sedona1,2, Andreas Lintermann2, Gabriele Cavallaro2,
Helmut Neukirchen1, Morris Riedel1,2

1 School of Engineering and Natural Sciences, University of Iceland, Iceland
2 Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany

ABSTRACT

Deep Learning models have proven necessary in dealing with
the challenges posed by the continuous growth of data volume
acquired from satellites and the increasing complexity of new
Remote Sensing applications. To obtain the best performance
from such models, it is necessary to fine-tune their hyperpa-
rameters. Since the models might have massive amounts of
parameters that need to be tuned, this process requires many
computational resources. In this work, a method to accelerate
hyperparameter optimization on a High-Performance Com-
puting system is proposed. The data batch size is increased
during the training, leading to a more efficient execution on
Graphics Processing Units. The experimental results confirm
that this method reduces the runtime of the hyperparameter
optimization step by a factor of 3 while achieving the same
validation accuracy as a standard training procedure with a
fixed batch size.

Index Terms— Hyperparameter Tuning, Deep Learning,
Batch Size, High-Performance Computing, Remote Sensing.

1. INTRODUCTION

The enormous investments that made freely available data
acquired by modern Earth Observation (EO) programs have
democratized access to timely satellite imagery of the en-
tire planet. Missions such as the Copernicus Sentinel-2 can
re-observe the same area every 5 days (under cloud-free con-
ditions) by exploiting two polar orbiting satellites. Its free
data represent an invaluable asset for tackling challenges
as wide-ranging and important as quantifying the effects of
climate change through land cover classification, vegetation
mapping, environmental monitoring, etc. [1]. Nevertheless,
the extraction of valuable information from raw satellite data

This work was performed in the Center of Excellence (CoE) Research
on AI- and Simulation-Based Engineering at Exascale (RAISE) receiving
funding from EU’s Horizon 2020 Research and Innovation Framework Pro-
gramme H2020-INFRAEDI-2019-1 under grant agreement no. 951733. The
authors gratefully acknowledge the computing time granted by the JARA
Vergabegremium and provided on the JARA Partition part of the supercom-
puter JURECA at Forschungszentrum Jülich.

is complex and requires large amounts of labelled training
samples when using supervised learning with Deep Learn-
ing (DL) models. Furthermore, to achieve the best perfor-
mance from a DL model, it is fundamental to optimize the
values of its hyperparameters. This optimization step requires
several processing steps that may consume a lot of computing
power, i.e., leading to long processing times.

The present manuscript contributes to the Remote Sens-
ing (RS) community by exploring a way to reduce these com-
putational costs. While the group’s previous work [2] focused
on using evolutionary methods, this work aims at reducing
hyperparameter tuning costs by training with a large batch
size BS without sacrificing validation accuracy. By running
the hyperparameter tuning more efficiently, it becomes faster
and cheaper for the community to find the best performing
models. The experiments make use of the BigEarthNet-19
dataset [3]. It consists of 590,326 patches extracted from 125
Sentinel-2 tiles, each associated to one or more of the 19 la-
bels of the simplified legend of the CORINE Land Cover [4],
a thematic map from 10 European countries updated in 2018.

2. PROBLEM FORMULATION

The performance of deep neural networks depends on the hy-
perparameters set by the user before training. This usually
involves a lot of manual tuning but may yield huge gains in
performance. The main problem in finding the right set of hy-
perparameters is the expensive evaluation of different config-
urations. Each of them requires a full model training run. In
principle, two main strategies for reducing the overall com-
putational costs exist: (1) improving the choice of hyperpa-
rameters with optimization algorithms and (2) reducing the
runtime of the training runs. This work focuses on the latter.

Large batch size parameter values BS are necessary when
a large dataset is used for training on multiple Graphics Pro-
cessing Units (GPUs) on an High-Performance Computing
(HPC) system. In this case, a large BS value (that still fits into
the GPU memory) leads to a higher GPU utilization, increas-
ing the efficiency. BS values of up to 80,000 samples have
been reported for a Convolutional Neural Network (CNN) [5].

However, training with large BS values usually results in a
lower validation performance, which is a general problem in
distributed DL. Several techniques have been proposed to cir-
cumvent this problem, i.e., scheduling the learning rate LR
to slowly increase at the beginning and then decaying it over
time [6], and using optimizers such as LARS [7] or LAMB [8]
that introduce layerwise adaptive scaling mechanisms.

While these approaches focus on adjusting the parame-
ter LR, this work adapts the parameter BS itself to acceler-
ate the process. Empirically, this has a similar effect as de-
caying the LR over time [9] while using less parameter up-
dates. Smith et al. [9] train a CNN on ImageNet starting with
BS = 8,000 images, which is increased to BS = 16,000
after E = 30 epochs. Compared to the baseline of keep-
ing the BS constant at 8,000 throughout the whole training
process, a ≈ 33% faster convergence with no drop in vali-
dation accuracy (76.1%) is reached. McCandlish et al. [10]
introduce a metric called the Gradient Noise Scale (GNS) to
predict the largest useful BS value to be employed during
each part of training. When using Stochastic Gradient De-
scent (SGD) with a small BS value, the gradient update is a
noisy approximation of the true gradient. A big batch resem-
bles the true gradient much better. Following this intuition,
the GNS measures the ratio of noise (variance) to signal (size)
of the gradient. A large noise to signal ratio indicates that a
bigger BS value should be used and vice versa. Libraries
such as Pollux [11] or KungFu [12] use the GNS and simi-
lar metrics to systematically optimize the throughput of DL
models on HPC systems.

3. METHODOLOGY

3.1. Distributed Deep Learning

Training a neural network on large datasets can be time con-
suming as the the model needs to iterate though the whole
input data once per epoch. One method to accelerate this
process is to use data parallel training: the input data is split
and distributed to different GPUs that all train separately on
their own batches but perform a gradient synchronization at
the end of each epoch. This way, the model on each GPU is
the same but the data is different. Horovod [13] is an easy-
to-use Python library that implements efficient data parallel
training and was already used by us in the past to train on an
RS dataset with up to 128 GPUs [14].

3.2. EfficientNet

The benefits of employing CNNs come at the cost of an in-
creased computational budget. EfficientNet [15] is an archi-
tecture that, maintaining a fixed ratio between the width and
the depth of the network, aims at decreasing the amount of
parameters (i.e., weights and biases of the network) while
maximizing the extraction of fine-grained and high-level fea-
tures. It consequently curbs the usage of resources as com-

pared to other benchmark models such as ResNet [16], reach-
ing higher test accuracies while being of smaller size. Here,
the EfficientNet-B0 [15] is used, a model achieving better test
accuracies than ResNet-50 while having much less parame-
ters (5.3M for EfficientNet-B0 vs. 26M for ResNet-50).

3.3. Hyperparameter Optimization with Ray

Tuning the hyperparameters of a neural network involves
training a lot of different sets of hyperparameters (config-
urations). A complete training run of said configuration is
called a trial. Allocating resources and launching each trial
manually is inefficient. Therefore, Ray1 is used, which is an
open-source library for distributed computing. Its subpack-
age Ray Tune can run distributed hyperparameter tuning at
scale. It provides options to specify: the number of resources
to use per trial, the hyperparameters, which range they are
sampled from, and a scheduling or optimization algorithm.
With this approach, a single Ray Tune job is started and Ray
deals with all scheduling and communication tasks.

3.4. Changing the Batch Size

DL libraries like Tensorflow usually require the BS to be set
in the beginning of a training run and remain fixed through-
out. To change the BS using such libraries, it is necessary
to train up to a certain epoch value E with a fixed BS value,
check-point, and then continue the training with a different
BS value. This would introduce expensive memory access
operations. Here, a different approach is followed. With the
GradientTape mode of TensorFlow, an iterative way of calling
the optimization steps has to be implemented, exposing the
current batch in each iteration. This way, a big batch can be
subdivided and the optimization step can be called on each of
the smaller batches individually. Except for the epoch where
the switch between BS values occurs, tests have shown that
no additional computational overhead is required when using
this method, see Alg. 1 for a Python implementation.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

The experiments are executed on the Jülich Research on
Exascale Cluster Architectures (JURECA) system [17]. Its
DC (data-centric) module features 192 accelerated com-
pute nodes, each equipped with four NVIDIA A100 GPUs
(with 40 GB high bandwidth memory each). The experi-
ments use 24 nodes (96 GPUs in total) concurrently. The
following Python libraries are employed: Horovod/0.23.0,
TensorFlow/2.5.0, and Ray/1.8.0. The overall hyperparame-
ter tuning run is launched with Ray Tune. Ray then allocates
4 nodes (16 GPUs) to each trial, within each trial data-parallel

1https://www.ray.io/

https://www.ray.io/

Algorithm 1 Implementation of varying the batch size by
batch subdivision.

t r a i n i n g i t e r a t i o n loop
f o r ba tch , (images , l a b e l s) i n enumera t e (d a t a s e t) :

s p l i t = 32 # f a c t o r o f b i g g e r t o s m a l l e r b a t c h
s m a l l b a t c h c a s e
i f (epoch < 20) :

s p l i t up t h e o r i g i n a l b i g b a t c h i n t o
s m a l l e r b a t c h e s

i m a g e s s p l i t = np . a r r a y s p l i t (images ,
s p l i t)

l a b e l s s p l i t = np . a r r a y s p l i t (l a b e l s ,
s p l i t)

c a l l t h e t r a i n i n g s t e p on each of t h e
s m a l l b a t c h e s

f o r i i n r a n g e (s p l i t) :
l o s s v a l u e = t r a i n i n g s t e p (

i m a g e s s p l i t [i] , l a b e l s s p l i t [i])
b i g b a t c h c a s e
e l s e :

l o s s v a l u e = t r a i n i n g s t e p (images , l a b e l s)

training is executed via Horovod. While on NVIDIA GPUs
the preferred way of communication is through the NCCL2

backend, Horovod in combination with Ray only supports the
slower Gloo3 backend, though.

The following hyperparameter ranges are evaluated:
Learning rate LR ∈ [10−3, 1.0], momentum M ∈ [0.0, 0.9],
nesterov momentum NM ∈ {false, true}, and weight de-
cay WD ∈ [5·10−5, 10−1]. The selection of hyperparameters
for a trial is performed with a random search. All models are
trained for E = 100 epochs.

The training starts with a small batch size of BSlocal =
32 per GPU (BSglobal = 16 · 32 = 512) and switches to
BSlocal = 1,024 per GPU (BSglobal = 16,384) after E =
20. The choice of the BS is motivated by our earlier re-
sults [14], where training on the BigEarthNet dataset was sta-
ble for BSglobal = 512 but diverged for BSglobal = 16,384.
Switching BS at E = 20 (at 20% of the total training time)
gives the optimizer sufficient time to equalize instabilities in
early epochs and leads to a yet computationally efficient train-
ing with a larger BS for 80% of the time. The application
of metrics like the GNS to achieve a more accurate guess of
which BS to use were unsuccessful. To evaluate the influence
of this BS value switching mechanism on the validation met-
rics and the computational resource consumption, the same
24 randomly sampled hyperparameter configurations are run
once with and without varying BS. We provide the corre-
sponding code in a GitLab repository4.

2https://developer.nvidia.com/nccl
3https://github.com/facebookincubator/gloo
4https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/

switching_bs

0 20 40 60 80 100
epochs

50

100

150

200

250

300

350

tim
e

pe
r e

po
ch

Compute time comparison
changing batch size
constant batch size

0 20 40 60 80 100
epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
 sc

or
e

(m
icr

o)

Performance of best trial

changing batch size
constant batch size

0 20 40 60 80 100
epochs

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F1
 sc

or
e

(m
ac

ro
)

Exploring different timings for switching the BS

BS switch at E=10
BS switch at E=15
BS switch at E=20
BS switch at E=25

Fig. 1. Top: Mean time per epoch. Center: Best performing
trial. Bottom: Comparison of timing for switch.

4.2. Evaluation

A comparison of the time per epoch with and without chang-
ing the BS is shown in Fig. 1 (top). For the first E = 20
epochs, both methods take about the same time. Once the
threshold is reached, the effect of the BS value switch is visi-
ble as it is more than 4 times faster. The whole hyperparame-
ter tuning run is about 3 times faster when varying the BS as
shown in Tab. 1. In terms of validation F1 scores (a weighted
average of precision and recall), the best performing configu-
ration for both approaches is LR = 0.20735, M = 0.26415,
WD = 5 · 10−5, and NM = false. The scores achieved
are in line with our earlier work [14, 2]. As the scores are al-
most similar for BS = const. and the changing BS method,

https://developer.nvidia.com/nccl
https://github.com/facebookincubator/gloo
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/switching_bs
https://gitlab.jsc.fz-juelich.de/CoE-RAISE/FZJ/switching_bs

Table 1. Runtime of the hyperparameter tuning and accuracy
of the best performing run for constant and changing batch
size BS, showing accumulated and average trial runtime and
validation F1 micro (macro) score.

BSglobal total runtime trial runtime F1 scores

512 27 hrs 355 mins 0.78 (0.72)
512 →16,384 10 hrs 136 mins 0.78 (0.70)

the latter does not seem to suffer from the problem of a lower
validation accuracy that large batch sizes usually come with.

The graphs in Fig. 1 (center) show the detailed training
progress of the best performing trial. Overall, the train-
ing with a larger BS value (changing BS method) seems
to be smoother than training with a smaller BS (constant
BS method) for the whole duration. Furthermore, much of
the training progress is already made in the first 20 epochs.
Still, the last 80 epochs are necessary to achieve the final F1
scores. For the F1 micro score, the changing BS approach
even seems to perform slightly better, but this might be due to
the smoothness of its training curve. In the end, both methods
converge to a similar F1 score.

Figure 1 (bottom) evaluates the impact of the epoch
switching on the training progress. Switching at E = 10
results in a lower final F1 macro score while with a switch at
E = 15, the training performs similar to the original. Switch-
ing later in time leads to a better accuracy but also increases
the runtime. However, as the graph for a switch at E = 25
shows, the gain is only marginal, so the original choice of
E = 20 seems to be a good trade-off between accuracy and
runtime. In all cases, the training never diverges, which in-
dicates that the found hyperparameters seem to stabilize the
optimizer even when training with larger batches earlier.

5. CONCLUSIONS

In this manuscript, a method to successfully accelerate the
hyperparameter tuning process of a CNN trained with a RS
dataset has been presented. Increasing the batch size during
training from a smaller one in the beginning (to let the opti-
mizer stabilize) to a larger one (to run data parallel training
more efficient) seems to be a promising approach and does
not reduce the validation accuracy. Compared to running the
hyperparameter tuning with a fixed batch size, a speedup from
27 hours to 10 hours runtime on 96 GPUs has been achieved.
While in this study, the focus has been on the BigEarthNet
dataset, it would be interesting to see if the approach can also
be transferred to other datasets and models.

6. REFERENCES

[1] J. Aschbacher, “ESA’s earth observation strategy and
Copernicus,” in Satellite Earth Observations and Their
Impact on Society and Policy. Springer, 2017.

[2] D. Coquelin et al., “Evolutionary optimization of neural
architectures in remote sensing classification problems,”
in IGARSS. 2021, IEEE.

[3] G. Sumbul et al., “BigEarthNet dataset with a new class-
nomenclature for remote sensing image understanding,”
2021, arXiv: 2001.06372.

[4] M. Bossard, J. Feranec, and J. Otahel, “CORINE
land cover technical guide – Addendum 2000,” Tech.
Rep. 40, European Environment Agency, Copenhagen,
2000.

[5] S. Kumar et al., “Exploring the limits of concur-
rency in ML training on Google TPUs,” 2021, arXiv:
2011.03641.

[6] A. Krizhevsky, “One weird trick for parallelizing con-
volutional neural networks,” 2014, arXiv:1404.5997.

[7] Y. You et al., “Large batch training of convolutional
networks,” 2017, arXiv:1708.03888.

[8] Y. You et al., “Large batch optimization for deep
learning: Training bert in 76 minutes,” 2020, arXiv:
1904.00962.

[9] S. L Smith et al., “Don’t decay the learning rate, in-
crease the batch size,” 2017, arXiv: 1711.00489.

[10] S. McCandlish et al., “An empirical model of large-
batch training,” 2018, arXiv: 1812.06162.

[11] A. Qiao et al., “Pollux: Co-adaptive cluster schedul-
ing for goodput-optimized deep learning,” 2021, arXiv:
2008.12260.

[12] L. Mai et al., “KungFu: Making training in distributed
machine learning adaptive,” in OSDI 20. Nov. 2020, pp.
937–954, USENIX Association.

[13] A. Sergeev and M. Del Balso, “Horovod: fast and
easy distributed deep learning in TensorFlow,” 2018,
arXiv:1802.05799.

[14] R. Sedona et al., “Scaling up a Multispectral RESNET-
50 to 128 GPUs,” in IGARSS. 2020, IEEE.

[15] M. Tan and Q. V. Le, “EfficientNet: Rethinking model
scaling for convolutional neural networks,” 2020, arXiv:
1905.11946.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” 2015, arXiv:
1512.03385.

[17] P. Thörnig, “JURECA: Data centric and booster mod-
ules implementing the Modular Supercomputing Archi-
tecture at Jülich Supercomputing Centre,” Journal of
large-scale research facilities, vol. 7, 10 2021.

	 Introduction
	 Problem Formulation
	 Methodology
	 Distributed Deep Learning
	 EfficientNet
	 Hyperparameter Optimization with Ray
	 Changing the Batch Size

	 Experimental Results
	 Experimental Setup
	 Evaluation

	 Conclusions
	 References

