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Zusammenfassung

Für moderne Verteilte Systeme ist es wichtig, dass sie Echtzeit-Anforderung-
en einhalten, um z.B. innerhalb einer gegebenen Zeitspanne eine Antwort auf
eine Anfrage zu liefern. Testen ist die wichtigste Maßnahme zur Qualitäts-
sicherung von Software-Systemen. Das Echtzeit-Testen von Verteilten Sys-
temen wird jedoch bisher nur unzureichend unterstützt.
Diese Dissertation behandelt Sprachen, Werkzeuge und Muster für die Be-
schreibung von verteilten Echtzeit-Tests. Zur Testbeschreibung wird TIMED-
TTCN-3 eingeführt. Es handelt sich hierbei um eine Echtzeit-Erweiterung
der standardisierten Testbeschreibungssprache Testing and Test Control No-
tation version 3 (TTCN-3). Um die Entwicklung von Echtzeit-Tests zu ver-
einfachen, werden ein Werkzeug und die zugrundeliegenden Übersetzungs-
regeln vorgestellt, die es ermöglichen, TIMEDTTCN-3 Echtzeit-Testfälle aus
Echtzeit-Testzwecken zu generieren. Echtzeit-Testzwecke werden hierzu an-
hand von Message Sequence Charts (MSCs), die Echtzeit-Eigenschaften
enthalten, formalisiert. Um die Spezifikation von Echtzeit-Anforderungen
und die Auswertung von Echtzeit-Tests zu vereinheitlichen, werden Real-
time Communication patterns (RTC-patterns) eingeführt. Diese Muster bie-
ten wiederverwendbare Lösungen zur Spezifikation von Echtzeit-Tests mit
MSC und TIMEDTTCN-3. In diesem Zusammenhang werden außerdem eine
Übersicht und eine allgemeine Klassifikation von existierenden Test-Mustern
gegeben.





Abstract

For modern distributed systems, it is important that they adhere to real-
time requirements, e.g., to deliver a response to a request within a given
deadline. For assuring the quality of software systems, testing is the most
important means. However, a mature support for real-time testing of dis-
tributed systems is missing.
This thesis treats languages, tools, and patterns for the specification of dis-
tributed real-time tests. For test specification, TIMEDTTCN-3 is proposed.
It is a real-time extension of the standardised Testing and Test Control
Notation version 3 (TTCN-3). To ease real-time test development, a tool
and underlying transformation rules which allow to generate TIMEDTTCN-3
test cases from real-time test purposes are presented. Message Sequence
Charts (MSCs) are used to express real-time properties as formalised real-
time test purposes. In order to harmonise real-time requirement specifica-
tion and real-time test evaluation, Real-time Communication patterns (RTC-
patterns) are introduced. They provide reusable solutions for real-time test
specification based on MSC and TIMEDTTCN-3. The work on this kind of
patterns includes also a survey and a classification of existing test patterns
in general.
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Chapter 1

Introduction

Modern distributed systems are becoming more and more complex and have
to adhere to real-time requirements. Such systems pervade daily life: In
business and administration, e.g., online brokers provide share prices in
real-time, and subsequent orders need to be processed within seconds. In
the telecommunication and multimedia domain, e.g., Voice over IP (VoIP)
requires to transfer audio signals within a few 100 milliseconds via the In-
ternet and to replay it with a jitter of less than a half millisecond to deliver
an acceptable quality. Process control in industrial plants or air traffic con-
trol requires that hard time deadlines are met, otherwise, a disaster might
result. Testing is the most important means to give confidence that a dis-
tributed real-time system implementation meets its requirements with re-
spect to functional and real-time behaviour.
Languages, methods, and tools for specifying functional tests of distributed
systems have become mature: For test specification, the Testing and Test
Control Notation version 3 (TTCN-3) is standardised and well supported
by tool providers. Powerful test generation tools allow to derive test cases
from formal specifications based on standardised industrial strength spec-
ification languages. By this means, international telecommunication stan-
dards provide not only protocol specifications, but also corresponding test
specifications which allow to assess the conformance of an implementation
to its specification. A comparable and adequate support for real-time test
specification is lacking.

1.1 Scope of this Thesis

In this thesis, an approach for the specification of black-box tests for test-
ing hard real-time requirements of distributed systems is presented. This
comprises the following contributions:
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1. A TTCN-3-based language for specifying distributed real-time black-
box tests.

2. Automatic generation of real-time test cases from graphical test pur-
pose definitions.

3. Patterns for harmonising real-time requirement description and real-
time test evaluation.

The work presented in this thesis originates from the author’s participation
in the INTERVAL project [Int02], a European research project which aimed
at formal design, validation and testing of real-time telecommunications
systems. The continuation of this work resulted in the participation in the
Patterns in Test Development (PTD) [ETS04] work item at the European
Telecommunications Standards Institute (ETSI).

1.2 Structure of this Thesis

The structure of this thesis is as follows: After this introduction, some es-
tablished foundations for this thesis are given in Chapter 2. This includes an
overview on testing, the testing process in general, and testing of real-time
requirements in particular. Furthermore, the chapter provides an introduc-
tion into the Message Sequence Chart (MSC) language, the Inres protocol
case study which is used throughout this thesis and the Testing and Test
Control Notation version 3 (TTCN-3).
In Chapter 3, TIMEDTTCN-3 and its alternative presentation formats are
presented. TIMEDTTCN-3 is a real-time extension of the TTCN-3 test spec-
ification language. TIMEDTTCN-3 allows to specify distributed real-time
tests. Real-time testing with TIMEDTTCN-3 is based on the generation and
evaluation of time stamps for time critical events.
Subsequently, in Chapter 4, the generation of real-time test cases from
graphical test purpose descriptions is explained. This is achieved by using
real-time test purposes which are formalised as MSCs containing real-time
constraints. Hence, a tool is able to generate TIMEDTTCN-3 real-time test
cases from them. The underlying transformation rules are outlined in this
chapter. This includes generation of real-time test cases for both kinds of
test architectures, local and distributed ones.
A supplemental method for obtaining test cases is a pattern-based approach,
which is presented in Chapter 5. Besides a survey on existing patterns and
a classification scheme for test patterns, Real-time Communication patterns
(RTC-patterns) are introduced. RTC-patterns can be used for pattern-based
specification of real-time requirements and real-time test purposes. Since
each RTC-pattern is accompanied by TIMEDTTCN-3 code for generating
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and evaluating time stamps, corresponding real-time test cases can be easily
obtained by using RTC-patterns.
Finally, a summary, a discussion of related work, and an outlook are given
as a conclusion in Chapter 6. This thesis is completed by a list of acronyms
and the referenced bibliography.

1.3 Dependencies of Chapters

Chapters 3 to 5 depend on the foundations provided by Chapter 2. Nev-
ertheless, a reader who is familiar with the principles of testing, the Inres
example protocol, TTCN-3 as well as MSC and its real-time constructs, can
safely skip Chapter 2.
TIMEDTTCN-3, which is presented in Chapter 3, is heavily used in Chap-
ter 4 and in Section 5.3. Thus, Chapter 4 and Section 5.3 should not be
read without the foundation of Chapter 3. However, a reader who is only
interested in using RTC-patterns for real-time requirements specification,
but not in their application to testing, can read Chapter 5 on its own, but
should skip Section 5.3.
A reader who just wants to get a quick overview on the topics of this thesis
should read the summaries which are provided at the end of each chapter
and the overall summary and conclusions given in Chapter 6.





Chapter 2

Foundations

This chapter provides the foundations which are used in the subsequent
chapters. Section 2.1 gives an introduction into software testing and the test-
ing process. Then, in Section 2.2, testing of real-time properties is discussed.
This is followed by a section describing Message Sequence Charts (MSCs),
which can be used for specifying real-time properties. After that, the Inres
protocol is presented in Section 2.4. This protocol is used as an example
case study throughout this thesis. The Testing and Test Control Notation
version 3 (TTCN-3), a language for specifying functional black-box tests, is
explained in Section 2.5. Finally, this chapter is summarised.

2.1 Testing

Testing is one of the most important constituents of software quality assur-
ance. It is an analytic means for assessing the quality of software [Wal01].
In [Mye79], G. Myers defines testing as “[. . . ] the process of executing a
program with the intent of finding errors.” However, errors in a program
can also be revealed without execution by just examining its source code
[FLS04]. This is usually referred to as static testing (in contrast to dynamic
testing based on execution). Thus, [Bal98] regards testing more general as
a means which aims at revealing errors in a program.
While [Mye79] refers to a program which is tested, a more general term for
the subject of test is item under test. This might be a simple program, a
single function, a group of software components, or a whole system, e.g. even
a large distributed system.
Besides the granularity, the characteristics of an item under test may differ
in further aspects. According to [Gra02], a classification of systems is pos-
sible with respect to the dimensions depicted in Figure 2.1: A system may
be characterised concerning its communication with the environment, i.e. it
may communicate either via message exchange or via (remote) procedure



6 2. Foundations

R
ea

l−
tim

e

Communication

local

distributed

message−basedprocedure−based

untimed

real−time Distribution

Figure 2.1: Dimensions of Systems

Unit System

Distributed

Local

distribution
Test

Structural

Functional

Static

Test scope

Te
st

 g
oa

l

Non−

(e.g.
real−time)

functional

Integration

Figure 2.2: Dimensions of Testing

calls. Another distinction is possible with respect to real-time aspects: some
systems are untimed, i.e. just their functional behaviour is important. For
other systems’ behaviour it is crucial that it adheres additionally to certain
real-time requirements. A further dimension of systems is the distribution
of their components: a monolithic system consists only of components which
are local to a single node and share memory, while the components of a dis-
tributed system may be located on several remote nodes which communicate
with each other without shared memory.
In a similar way, different kinds of tests may be distinguished. To some
extent, the different kinds of tests result from the characteristics of the
item under test. In Figure 2.2, different possible dimensions of testing are
depicted.1 The three different dimensions are as follows:

1Note that even more dimensions might be used for classifying software tests. For
example, the communication aspect, which has been distinguished in Figure 2.1, has been
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Test goal: The brief survey on definitions of testing already revealed that
static and dynamic tests can be distinguished:

1. Static testing: Static tests assess an item under test without ex-
ecuting it. Static tests are able to locate defects in an earlier
stage than dynamic tests and thus may reduce costs in contrast
to defects which are revealed in later stages.

The remaining elements of this dimension are dynamic tests, for which
a more close grained distinction is possible. It is dependent on the goal
at which a test is aimed.

2. Structural testing: Structural test approaches have the goal to
cover the structure (e.g. control or data flow) of an item under
test during test execution. To achieve this, the internal structure
of the item under test needs to be known. Therefore, another
term for structural tests is glass-box tests [Mye79].

3. Functional testing: The goal of this type of test is to assess an
item under test with respect to the functionality it should fulfil.
Functional testing is based on the specification of the item under
test. In contrast to structural tests, functional tests do not require
any knowledge of internals of the item under test. Therefore, they
are called black-box tests [Bei95].

4. Non-functional testing: Like functional tests, non-functional tests
are usually performed against requirements contained in a spec-
ification. In contrast to pure functional testing, non-functional
testing aims at the assessment of non-functional requirements. A
variety of different non-functional properties exists, e.g. real-time.
Examples of such properties are given in Section 2.2.
Non-functional tests are usually black-box tests. Nevertheless,
for retrieving certain information, like values of internal clocks,
access to internals of the item under test may be convenient. In
this case, such tests have to be regarded as grey-box tests.

Test scope: The test scope describes the granularity of the item under
test which may vary as already described. Due to composition of
the item under test, testing at different scopes may reveal different
defects [Wey86, Wey88]. Since units are composed into larger groups
of components which finally make the whole system, tests are usually
performed in the following order of scopes:

subsumed, since for testing itself the actual communication mechanism does not matter.
Nevertheless, a universal test language should support both types of communication to
enable testing of both types of systems.
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1. Unit: At the scope of unit testing, the smallest testable unit (e.g.
a class in an object-oriented implementation or a module in a
procedural language) is tested in isolation. By definition, a unit
is not distributed.

2. Integration: A further kind of test is concerned with testing the
integration of a strongly connected composition of units which
does not form a whole system on its own.

3. System: The whole system is the scope of system tests. A com-
plex system may be distributed and has usually different inter-
faces at which it can be accessed.

Test distribution: Not only the item under test may be distributed, but
also the tester or test system itself can be characterised with respect
to its distribution:

1. Local: A local test consists of just one test component located on
a single node. The test is driven by the test component which
accesses the item under test through one or more interfaces.

2. Distributed: A distributed test consists of several test compo-
nents which may be distributed over several nodes. Thus, the
whole test consists of concurrently running components which
interface the item under test. To achieve a deterministic test,
some coordination of the components is necessary.

It has to be noted that even a distributed system can be tested using
a local tester and vice-versa. The different interfaces of a distributed
item under test may be accessed from within one test component and a
monolithic item under test may be accessed concurrently from several
test components as well.

This thesis focuses on distributed black-box system and integration testing,
i.e. distributed testing against requirements via public interfaces of the item
under test. In particular, the emphasis is on non-functional testing of hard
real-time properties. This is shown in Figure 2.3 (the projection to the
coordinate planes is shown as shaded area). Since distributed testing may
be restricted to local testing, also solutions for local testing are provided.

2.1.1 The Testing Process

Like software development in general, the quality of the testing procedure
itself benefits from a process of systematic testing activities. Figure 2.4
shows the activities of a typical black-box testing process. Activities are
depicted as rounded boxes, the artefacts which are input and output of the
activities are depicted as rectangles.
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The overall goal of a black-box testing process is to obtain a test result,
which indicates whether an implementation, which is the item under test,
fulfils its specification or not.2 This is achieved by defining test purposes. A
test purpose describes an objective of testing which focuses on an individual
requirement being part of the specification. Since a test purpose abstracts
from the actions which are necessary for testing a requirement, correspond-
ing test cases have to be developed. A test case is a detailed description
of all test actions which need to be performed to achieve a test purpose.
All test cases and their associated test data are grouped together into a test
suite. A test suite can then be executed against the implementation. During
test execution, a test log of the occurring test events is recorded. Finally,
the test has to be evaluated and the test result is denoted by a verdict which
indicates whether the implementation passed the test or failed.

2.1.2 Conformance Testing Methodology and Framework

The ISO/IEC standard 9646 Conformance Testing Methodology and Frame-
work (CTMF) [ISO97b] is an example for an incarnation of a black-box
testing process. Even though CTMF is intended for testing the functional
behaviour of Open Systems Interconnection (OSI) [ISO97a] protocol entities

2However, since testing can only show the presence, never the absence of errors [Dij70],
this cannot be guaranteed by testing.
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and thus uses a lot of OSI specific notions, it can be generalised and has thus
been successfully applied to black-box testing of distributed systems in gen-
eral [SR96, BW97, Anl98, Gec98]. Hence, those concepts of CTMF which
are appropriate in the context of this thesis are presented in the following.
To allow the specification of portable tests which can be executed on differ-
ent test systems, CTMF distinguishes between abstract and executable test
cases or Abstract Test Suites (ATS) and Executable Test Suites (ETS), re-
spectively. An ATS abstracts from test implementation details, e.g. special
hardware equipment through which the item under test is interfaced. Thus,
as part of test realisation, an ATS needs to be transformed into an ETS by
adding the information which is specific to, e.g., the operating system and
hardware of the test system, but also to the item under test (Protocol Im-
plementation eXtra Information for Testing (PIXIT)). Then, the final ETS
can be obtained by, e.g., compiling the ATS and the additional information
into executable machine code.
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Furthermore, CTMF introduces several abstract test methods, which define
test architectures which are appropriate for testing entities of a protocol
stack. A simplified view of the local test method and the distributed test
method is given in Figure 2.5.
In CTMF, the protocol entity under test is denoted as Implementation Under
Test (IUT), whereas the System Under Test (SUT) additionally comprises
further elements, like the underlying service provider through which the
lower layer boundary of the IUT is accessed. The Lower Tester (LT) is used
to connect to the lower layer boundary through an underlying service. In
contrast, the Upper Tester (UT) accesses the upper layer boundary of the
IUT usually directly.
The interfaces through which the IUT is stimulated by sending messages
and observed by receiving messages3 are called Points of Control and Ob-
servation (PCOs), i.e. black-box testing can only be performed if the IUT
is controllable and observable. A PCO is modelled as a FIFO queue for
preventing that messages sent to and received from the IUT are lost.
The difference between the two depicted test methods is the distribution of
the UT and LT Test Components (TCs). As the names of the test methods
suggest, the TCs of the distributed test method are distributed (the UT is
considered to be part of the SUT) and thus need to be coordinated remotely.

2.2 Real-Time Properties and Testing

In Section 2.1, two different kinds of black-box testing have been classified:
testing of functional and of non-functional requirements. In the following,
the difference between both is addressed and real-time properties are dis-
cussed.
Black-box testing is performed against requirements. [Par91] gives two def-
initions of a requirement:

3In testing, sending and receiving is considered from the test system’s point of view.
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1. A condition or capability needed by a user to solve a problem or achieve
an objective.

2. A condition or capability that must be met or possessed by a system
or system component to satisfy a contract, standard, specification, or
other formally imposed document. The set of all requirements forms
the basis for subsequent development of the system or system compo-
nent.

Requirements or respectively the properties which are required can be di-
vided into functional and non-functional ones. Functional requirements are
associated with tasks or behaviours a system must support, while non-
functional requirements are constraints on various attributes of the func-
tional behaviour.4 Thus, non-functional properties are always related to
functional behaviour and do not exist on their own.
A coarse classification of requirements which does not claim to be complete
is given in Figure 2.6. As depicted there, non-functional requirements can
be subdivided with respect to the following properties: real-time properties;
reliability properties like Mean Time Between Failure (MTBF) or robust-
ness; economic properties, e.g. costs or maintainability; usability properties
and security properties. In the remainder, this thesis focuses on real-time
properties.

Non−Functional

Requirements

SecurityReal−Time Reliability Economy Usability

Functional

Figure 2.6: Hierarchy of Requirements

2.2.1 Real-Time Systems and Real-Time Properties

According to [lL90], a real-time system is “a computing system where initi-
ation and termination of activities must meet specified timing constraints.”

4In the context of services, most of the non-functional properties are also denoted as
Quality of Service (QoS).
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Concerning the timing constraints a real-time system has to obey, hard and
soft real-time properties can be distinguished [SR90]:

Hard real-time properties are timing constraints which have to be ful-
filled in any case. If the hard real-time constraint is, e.g., on the
duration of a response to a request, this means that a late answer is a
wrong answer, because it is of no use anymore due to its lateness. An
example is the autopilot of an aircraft, where violation of hard real-
time constraints might lead to a crash. Mathematically, hard real-time
properties can usually be described by simple equations or inequations.

Soft real-time properties are time constraints which need to be satisfied
only in the average case or to a certain percentage. A late answer is
still a valid answer. An example is video transmission where a de-
layed frame might either be displayed delayed or dropped which is
not perceivable as long as no consecutive frames are affected. Even
though soft real-time systems are easier to implement, the mathemat-
ical description of soft real-time properties is more complex, because
it involves, e.g., statistical expressions.

Since statistics requires a series of samples, soft real-time properties are usu-
ally associated to streams of information, e.g. multimedia streams. Proper-
ties of streams are usually regarded as performance properties, whereas hard
real-time properties relate to a small set of discrete events.5 In this thesis,
only hard real-time properties are treated.
Examples for hard real-time properties are the delays latency and response
time but also frequency or its reciprocal cycle duration periodicity as well
as throughput [ATM99a, ATM99b, ATM00, Buc96, IET90, IET91, IET98,
IET99, IET02].6 A detailed description of these hard real-time requirements
can be found in Section 5.2.
Hard real-time requirements relate to discrete events like message reception
or stimulating requests. Thus, hard real-time requirements can be expressed
based on the relationship of time stamps of such events [Koy91]. A real-time
requirement description consists of both, the actual real-time property and
the functional behaviour on which the real-time property is imposed.
Besides informal prose specification of real-time requirements, formal tech-
niques can be used to specify real-time requirements. [AH91] surveys some
of them. However, those techniques did not prevail since most of them are
based on temporal logic [Pnu77] which is hard to understand for practition-
ers. A more intuitive formal language for real-time requirements specifica-
tion is described in Section 2.3.

5Though, the terms real-time and performance are also used synonymously [Jai91].
6Since throughput and periodic events involve repeated behaviour, both may also occur

as soft real-time properties—though, with statistical constraints instead of hard bounds.
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2.2.2 Functional vs. Real-Time Testing

Functional testing is concerned with assessing the functional behaviour of
an item under test independently of any timing aspects. While the temporal
(i.e. causal) order of events is regarded, the exact timing of the events is not
considered. Functional testing can be used for assessing both real-time and
non-real-time systems.7

In contrast, real-time testing assesses the real-time properties of an item
under test by considering the points in time when test events are exchanged
via the PCOs. It has to be noted that this does not only apply for observa-
tions. Also the stimuli which are sent by the test system may be subject of
real-time requirements, since an item under test might also assume certain
real-time properties from the environment, which for testing is provided by
the test system.
Since non-functional properties like real-time properties are always related
to functional behaviour, they cannot be tested on their own, but require a
test case which involves also the associated functional events for stimulating
and observing the item under test. Thus, a prerequisite of real-time test-
ing is that functional testing has been performed and the item under test
successfully passed its functional test.
An important requirement on testing is that tests shall be deterministic,
i.e. reproducible. Otherwise, if the test verdict changes for each execution
of the same test case, the outcome of a test run would be of no relevance.
While reproducibility is usually quite easy to achieve for non-distributed
pure functional testing, this may be a problem for distributed testing. In
this case, race conditions of concurrent components may lead to different
orders of events. This has to be considered during test case development,
e.g. by appropriate synchronisation of the concurrent components.
For real-time testing, reproducibility is a severe problem [Sch93]. The prob-
lem occurs if the item under test delivers a real-time performance which is
close to the limit of the actual real-time requirement, i.e. it is observed that
the real-time property is sometimes just below and sometimes just beyond
that limit. In this case, it is difficult to decide whether the item under test
really failed or whether the test system is in fact at its limits and thus re-
sponsible for non-deterministic observations.8 This can be avoided if the
test system itself obeys two requirements: Firstly, the time resolution of
the clock used to assess the test item’s real-time property is at least in the
same order of magnitude as the real-time requirements which are subject of

7Even though a non-real-time system or its corresponding functional test might involve
timers, e.g. for timeout provocation or detection, this is not considered as a real-time
property. Such timers are merely used to assure within a reasonable time frame the
absence of an event which is hence in fact a functional property.

8In worst case (i.e. the test system is far too slow), a test may be deterministic in the
sense that it yields always the wrong verdict.
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test. Secondly, the test system in general has to be fast enough to send the
stimuli and make the observations in time.
Hence, to be able to execute real-time test suites, an important prerequisite
is that the test system is fast enough. This can, e.g., be evaluated by
benchmarking the test system itself [HKN01, DST04].
Furthermore, if both distributed testing and real-time testing are combined,
clock synchronisation is an important issue. In this case, the clocks of the
distributed test components which are used for assessing the test item’s real-
time properties are running in parallel. Thus, if real-time requirements are
imposed on events which are observed on distinct distributed test compo-
nents, it is only valid to compare the obtained time stamps, if the clocks of
the distributed test components are synchronised.
In total, for real-time testing one has to be aware that not only the SUT is
a real-time system, but also the test system itself forms a (distributed) real-
time system. Hence, for the implementation of a real-time test suite, real-
time support from a real-time operating system is required, too. However,
low-level test implementation is out of the scope of this thesis.
Literature on implementing real-time tests [Sch93] often discusses probe
effects, i.e. the influence of instrumenting an item under test with monitors
for observing certain events. In fact, this is only relevant for white- or grey-
box tests, not for black-box tests as considered in this thesis. Nevertheless,
observations are also necessary for black-box testing. This is performed by
the test system via the PCOs, which have thus also to be taken into account
for real-time black-box testing. This is related to the previous considerations
on the speed of the test system. Hence, the test system should be fast enough
to deal with the queues of the PCOs in a way that events for which real-
time requirements apply are not queued but immediately processed. Using
black-box testing, only the time points when events occur at a PCO are
observable, not when a message leaves or enters the actual SUT. Though,
this is not a restriction since in real world, the real-time properties of the
SUT are perceived at the same location as the PCOs, i.e. not inside, but
just outside the SUT.
Since the concepts of CTMF are proven for functional testing, it is desirable
to reuse or extend and transfer them also to the area of real-time testing.
For example, even though the abstract test methods itself can only be ap-
plied in simple cases for distributed real-time testing, the constituents of
the CTMF test architectures can be reused. Nevertheless, e.g., for assessing
the real-time behaviour of an SUT at different load situations, additional
components for generating load might be required in a real-time test ar-
chitecture. In principle, this can be achieved by an ordinary test compo-
nent which generates the load. Detailed discussions of test architectures
which are suitable for distributed real-time black-box tests can be found in
[dMHB+91, SSR97, WG97, WG99].
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Moreover, CTMF defines a language for the specification of abstract con-
formance tests. However, this language is only intended for pure functional
black-box tests. A more powerful successor of that test language, the Testing
and Test Control Notation version 3 (TTCN-3) is described in Section 2.5.
Based on TTCN-3, a language for specifying distributed black-box real-time
tests is introduced in Section 3.

2.3 Message Sequence Charts

This section gives an introduction into Message Sequence Charts (MSCs), a
trace language which is used in this thesis for formal real-time test purpose
description (Section 4) and for capturing real-time requirements using Real-
time Communication patterns (RTC-patterns) (Section 5).
MSC is standardised by the International Telecommunication Union (ITU)
Recommendation Z.120 [ITU99b].9 It is a formal graphical language describ-
ing the flow of messages inside a distributed system. Besides the graphical
language, a machine readable textual format, which allows exchange and
processing by tools, is defined.
Z.120 defines three different types of diagrams: plain MSCs10, High-level
Message Sequence Charts (HMSCs) and MSC documents. Plain MSCs de-
scribe the actual message exchange, whereas HMSCs can be used to compose
more complex traces by combining MSCs. Plain MSCs, and HMSCs can be
collected in MSC documents.

2.3.1 Plain Message Sequence Charts

Basically, a plain MSC describes the flow of messages between the instances
or the environment of a system. For example, the MSC named Simple shown
in Figure 2.7 includes three instances. Instances PCO1 and PCO2 are both
of type PCO, instance System is of type SUT. The instance name is written
inside the instance head, the type of an instance is written above. However,
the type of an instance may be omitted. In this case, just the instance name
is written above the instance head (cf. Figure 2.8).
Furthermore, the depicted MSC Simple specifies that message m1 containing
the parameter value is sent from instance PCO1 to System and subsequently,
message m2 with the same parameter is sent from System to PCO1 and
PCO2. Both, sending and receiving a message are considered as individual
events. For the order of events, MSC uses a partial order semantics: the
events along an instance axis are totally ordered from top to bottom. (If

9Currently, a new version is being standardised. However, it only contains minor
changes. Most of them are part of [ITU01] to which the author of this thesis has con-
tributed.

10The term MSC is used both for a diagram (either plain MSC or HMSC) written in
the MSC language and for the language itself.
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msc Simple

Figure 2.7: A Simple MSC

that is not desired, co-regions can be placed along an instance axis to allow
a concurrent interleaving of events.) However, between different instances,
there is no order except for the one imposed by the fact that a message
cannot be received before being sent. In particular, comparing the vertical
positions of events on different instances gives no indication on any ordering.
Hence, the MSC in Figure 2.7 describes in fact three different traces:

1. send m1, receive at System, send m2 to PCO1, receive at PCO1, send
m2 to PCO2, receive at PCO2.

2. send m1, receive at System, send m2 to PCO1, send m2 to PCO2,
receive at PCO1, receive at PCO2.

3. send m1, receive at System, send m2 to PCO1, send m2 to PCO2,
receive at PCO2, receive at PCO1.

In addition to asynchronous message sending and reception, further kinds
of events are possible, e.g. procedure-based communication (i.e. remote pro-
cedure call), actions, instance creation and termination, but also, e.g., lost
and found messages. Moreover, it is possible to attach comments to events.
Besides these basic concepts, MSC provides several means for structuring
diagrams. Abstraction from and refinement of behaviour is supported in the
MSC language by decomposed instances and references. The decomposition
mechanism allows to refine the behaviour of an instance. This is shown in
figures 2.8a and 2.8b. The keywords decomposed as followed by the name
Internal in the header of instance System (Figure 2.8a) indicate that System
is an abstraction of the behaviour specified by MSC Internal (Figure 2.8b).
To obtain a well formed MSC, the communication events contained in the
referenced MSC must be a superset of the events attached to the decomposed
instance. Therefore, in the example, the reception of message m1 and the
sending of message m2 can be found in MSC TopLevel and MSC Internal.
The MSCs in figures 2.8a and 2.8b also contain reference symbols, which
both refer to the MSC Referenced. The semantics of a reference symbol
is given by the referenced MSC, i.e. the behaviour of the referenced MSC
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(c) MSC Referenced in (a) and (b) (d) Expansion of MSC (a) Using (b) and (c)

Figure 2.8: Abstraction and Refinement in MSC

replaces the reference. For well-formedness, the instances of a referenced
MSC must be a superset of the instances covered by the reference symbol
in the referring MSCs. By applying the rules for decomposed instances and
references, the MSC TopLevel can be expanded to the MSC Expanded shown
in Figure 2.8d.
For specifying complex behaviour in a compact manner within one diagram,
the MSC language provides inline expressions. They allow the description of
looped, alternative, optional, exceptional, and parallel behaviour. Examples
for alternatives and looped behaviour are given in the following paragraphs.
Figure 2.9a depicts an MSC in which an alt inline expression is used to
specify three possible alternative behaviours: In the first case, message m1 is
sent from PCO to System and subsequently, message m2 is sent from System
to PCO. The next case is separated by a dashed line and contains a similar
behaviour like before, except that message m3 is sent instead of message
m2. The last case consists just of sending message m4 from System to PCO.
This alt inline expression does not specify under which conditions which
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(a) Alternative Behaviour (b) Repeated Behaviour

Figure 2.9: MSC Inline Expressions and Conditions

alternative case is taken. Instead, it just describes that all alternatives are
valid traces. MSC uses a late choice semantics to decide which alternative
actually occurred.
In Figure 2.9b, an MSC is shown which contains a loop inline expression to
specify n to m repetitions of the behaviour framed by the inline expression.
The second operand in angle brackets may also be omitted which is then
interpreted as exactly n iterations. The value inf can be used to denote
infinity. If both operands are omitted, this is interpreted as <1,inf>.
The events contained in an inline expression or referenced by a reference
symbol are inserted into the surrounding MSC using weak sequential com-
position. In Figure 2.9b, messages m3 may, e.g., be sent and received prior
to message m1. Also the passes of a loop are connected by weak sequen-
tial composition, thus in Figure 2.9b arbitrary interleavings of the n to m
occurrences of messages m2 and m3 are possible.
Furthermore, MSC supports conditions for describing states either locally
to a single instance, spanning over several instances, or globally for all in-
stances. Conditions can either be set or used as guard. The latter restricts
the execution of events until a condition is set. Guards are indicated via the
keyword when. Either symbolic condition names or boolean expressions are
allowed as guarding condition.
A global guarding condition is depicted at the beginning of MSC Loop in
Figure 2.9b, where all instances must be in state Ready before execution
continues. A setting condition is shown at the bottom of that MSC, where
a condition labelled Finished is set. Since the condition symbol covers only
instances PCO1 and PCO2, that condition is a non-global one.



20 2. Foundations

2.3.2 High-Level Message Sequence Charts

An HMSC is a directed graph which describes how MSCs can be combined
into larger scenarios. A node of the graph is either a start node, an end
node, a connection point, a global condition, a reference symbol, or a parallel
frame. An HMSC abstracts from details like instances and events.
An example is shown on Page 26 in Figure 2.19: The HMSC InresScenario
starts in the global state disconnected. Then, it proceeds with the behaviour
of the referenced MSC ConnectionEstablishment. Since, in principle, con-
nection establishment might either be successful and lead to a connected
state or fail and remain in a disconnected state, the HMSC proceeds only
if the guarding condition connected is enabled. Then, an arbitrary num-
ber of DataTransfer is performed. The iteration is either terminated with
the behaviour of ConnectionRelease or with the behaviour of MSC Data-
TransferFailure. (Like for alternative behaviour in plain MSC, just possible
behaviours are specified by an HMSC and late choice semantics is used to
determine which of the possible branches is actually chosen.) Either branch
terminates with setting the global state to disconnected.

2.3.3 Time Constructs

MSC provides timers and time annotations for dealing with time. A clock
which is global to all instances is assumed. An MSC can be parameterised
with respect to the data language it uses in, e.g., message parameters, loop
boundaries, but also in expressions which are used in time constructs. No
assumption is made whether the time domain is dense or discrete, this is
dependent on the data language. Furthermore, the default time unit of the
data language is used as time unit in MSC. Since in this thesis MSC is
used in combination with TTCN-3, it is assumed that the data language of
TTCN-3 is used and thus, time is represented as floating point number with
time unit seconds.
In MSC, timers can be placed along an instance axis to specify start, ex-
piration and reset of a timer. A timer has a name and an interval which
specifies the minimal and maximal duration after which a timer expires.

PCO System

T[8,10] m1

m2

msc NoTimeout
PCO System

T[8,10] m1

m2

msc Timeout

(a) No Timeout (b) Timeout

Figure 2.10: MSC Timer Constructs
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PCO System

m1@t1

m2

&t2
m3
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(a) Time Constraints (b) Time Constraints (c) Time Measurements

Figure 2.11: MSC Time Constraints and Measurements

Figure 2.10a depicts the start of a timer T before sending message m1 and
its cancellation after receiving message m2. The example in Figure 2.10b
describes that a timer expires after a duration between 8 and 10 seconds.
Such timers are usually applied to detect the absence of other events, e.g. the
arrival of message m2 which may have been lost as shown in Figure 2.10b.
MSC timers shall not no be used for specifying real-time requirements, be-
cause during further usage of an MSC for system implementation, it cannot
be distinguished whether a timer translates into functional behaviour, i.e.
an actual timer inside the implementation to detect timeouts or whether it
was just used to describe real-time requirements.
Moreover, timers in MSC have further deficiencies: The events of timer start
and expiration may not span over distinct instances. Furthermore, since
timer start and expiration are events on their own, an arbitrary amount
of time may pass between starting a timer and the occurrence of events
surrounding a timer like sending or receiving a message.
A better means for specifying hard real-time properties are MSC time an-
notations.11 They can be attached to events like sending or receiving a
message. Examples of how the most common hard real-time requirements
can be expressed using MSC can be found in Section 5.2.
MSC distinguishes between time constraints and time measurements. Time
constraints are shown in figures 2.11a and 2.11b. They can be either absolute
(indicated by @), i.e. refer to the absolute time of occurrence of a single event,
or relative, i.e. constrain the duration between two events. In Figure 2.11a,
sending of m1 has to occur inbetween absolute time of 8 and 10 seconds,
and the time difference between receiving m2 and sending m3 at instance
PCO is restricted to be between 8 and 10 seconds.
The possible values of a time constraint are specified using intervals. The
interval boundaries may be open or closed. An open boundary is indicated
by a parenthesis, i.e. ’(’ or ’)’, and a closed boundary is defined by a square

11However, MSC is not well suited for expressing soft real-time requirements.
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PCO1 System PCO2

m1

[0,10) m2

msc SimpleTimed

Figure 2.12: Partial Ordering and Time Constraints

bracket, i.e. ’[’ or ’]’. An omitted lower bound is treated as zero (Fig-
ure 2.11b), an omitted upper bound as∞. A single value in square brackets
represents an interval which contains just that single element (Figure 2.11b).
Time measurements are used in Figure 2.11c. Either the absolute time
when a single event occurs or the relative delay between two events may be
measured. The value of a measurement is stored in a variable which is local
to the instance that owns that variable. For example, in Figure 2.11c, the
time point of sending message m1 is stored in variable t1 and the relative
time between sending m2 and m3 is measured and stored in variable t2.
Time constraints can also be attached to the beginning and end of inline
expressions and references. (This includes also references in HMSC.) In this
case, the constraint refers to the first or last event respectively which occurs
inside the inline expression or reference respectively. In cases of doubt, those
events are determined using late choice semantics.
When using time annotations, the partial order semantics of MSC still ap-
plies. I.e., in Figure 2.12, the order in which m1 and m2 are received is not
fixed. Thus, for the time points tm1 of receiving message m1 and tm2 of
receiving message m2, either 0 ≤ tm1− tm2 < 10 or 0 ≤ tm2− tm1 < 10 holds
depending on the actual occurred ordering.12

While relative time constraints for two explicitly given events can be easily
expressed using MSC, it is not possible to express the frequency or respec-
tively the cycle duration of periodic events. The reason is that standard
MSC does not allow to attach relative time constraints to events which
appear graphically only once in a diagram, but actually occur in the corre-
sponding trace several times due to iterations of a loop.
Thus, MSC extensions for HMSC [ZK02] and plain MSC [Neu00] have been
suggested. The notation for the extension of plain MSC is shown in Fig-
ure 2.13. It allows to attach relative time constraints also to a pair of events
which spans over adjacent repetitions of a loop. The semantics of this ex-
tension can be obtained by unrolling that loop as shown in Figure 2.14.

12The forthcoming MSC standard will support unidirectional relative time annotations,
which apply only when events occur in a desired order.
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Figure 2.13: MSC Extension for Periodic Events
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Figure 2.14: MSC from Figure 2.13 with Unrolled Loop

2.4 The Inres Protocol Case Study

Inres [Hog89, Hog91] is a sample protocol and service which has been created
for educational and research purposes. Nevertheless, it possesses many con-
cepts of a real-life protocol for communication systems which can be tested
using distributed black-box testing. Even though Inres was designed with
no real-time properties in mind, it is used as a case study throughout this
thesis. For this purpose, real-time requirements are imposed on some mes-
sage exchanges. This is done where appropriate in the individual chapters
of this thesis. In the following, just the pure functional properties of Inres
are presented.
Inres provides a reliable, connection-oriented and asymmetric service, i.e.
only one side (the Initiator user) can initiate connection establishment and
send data to the other side. The other side (the Responder user) can release
a connection13 and receive data.

13Note that in secondary literature, many Inres-based case studies allow also the Initia-
tor user to release a connection.
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Figure 2.15: Structure of Inres

For delivering its service, Inres transfers data units over an underlying
Medium service. The Medium service is assumed to be unreliable in the
sense that data units may get lost, but are not corrupted or duplicated.
The structure of Inres is shown in Figure 2.15. The Inres protocol entities
are the Initiator and the Responder Inres entities. They communicate with
each other using the Medium service, which offers its service via the Service
Access Point (SAP) MSAP. The service primitives at that SAP are MDATreq
for requesting the transfer of data and MDATind for indicating the arrival
of data to the Medium service user.
Inres offers its service via the SAP ISAP. The establishment of a connection
can be requested by a user of the Initiator protocol entity using the service
primitive ICONreq. This is shown Figure 2.16. Initially, it is assumed that
the participants are in a disconnected state. The connection request results
in a CR Protocol Data Unit (PDU) being sent to the peer Inres protocol
entity. For delivering CR to the Responder, the Medium service is used. The
Responder indicates the received connection request to the Responder user
via the ICONind service primitive. Both, Initiator and Responder are now
waiting for a confirmation. The response of the Responder user (ICONresp)
is transferred to the Initiator as a CC PDU via the Medium. If this is detected
at the Initiator, the connection confirmation ICONconf is sent to the Initiator
user and the participants are in a connected state.
Once a connection has been established, data can be transferred. The cor-
responding sequence of messages is presented in Figure 2.17. The transport
of some data can be requested using the IDATreq(data) service primitive.
Internally, the Inres protocol uses sequence numbers to identify its PDUs.
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Figure 2.16: Inres Connection Establishment
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Figure 2.17: Inres Data Transfer

Thus, the DT PDU which is sent by the Initiator via the Medium to the Re-
sponder contains not only data as parameter but also the sequence number
no. The Initiator is waiting in state sending for the acknowledgement. After
the data PDU has been received by the Responder, an IDATind is indicated
to the Responder user. Furthermore, the Responder acknowledges the recep-
tion of data to the Initiator with a PDU containing AK and the sequence
number. If that acknowledgement was successfully received by the Initiator,
all participants remain in the connected state.
The MSC DataTransfer shows only the case of successful data transmission.
However, since the Medium service is unreliable, Inres PDUs may also get
lost. To detect this, the Initiator entity uses a timer and resends PDUs
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Figure 2.18: Inres Connection Release

disconnected

ConnectionEstablishment

when connected

DataTransfer DataTransferFailure

ConnectionRelease

disconnected

disconnected

msc InresScenario

Figure 2.19: High-level MSC Describing Inres Scenarios

after a timeout up to 4 times. If retransmission fails after the 4th try,
the Initiator entity releases the connection by itself. The same holds for
connection establishment, which may also fail due to transmission problems.
In the normal case, a connection is released by the Responder user. This
is straightforward as depicted in Figure 2.18. The IDISreq service primitive
is forwarded as a DR disconnection request PDU. After the reception of
that PDU, the Initiator indicates this to its user with the IDISind service
primitive. Finally, the participants are in the disconnected state.
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The HMSC in Figure 2.19 gives an impression of possible scenarios for using
the Inres service. In particular, once a connection has been successfully
established, it is possible to transfer data several times. However, a failure
during data transmission leads to a disconnected state. (The behaviour of
MSC DataTransferFailure is not shown, but has been described informally.)

2.5 The Testing and Test Control Notation

This section describes the Testing and Test Control Notation version 3
(TTCN-3) [ETS02a, ETS03b, GHR+03]. Unlike the DejaGnu test library
[SE04] which is based on the Tool Command Language (TCL) [Ous04]
and the JUnit test framework [GMB04] which is based on Java [Sun04],
TTCN-3 is a language designed especially for testing. TTCN-3 has been de-
veloped and standardised by the European Telecommunications Standards
Institute (ETSI). Even though it is a successor of the special purpose
Tree and Tabular Combined Notation (TTCN) which is part of CTMF,
TTCN-3 supports various kinds of tests, with an emphasis on black-box
tests for distributed systems [SPVG01, Sza02, EYL02, SS03]. TTCN-3 can
not only be used for test specification but due to the broad tool support
[Dan04, DaV04, Tel04, Tes04, Ope04] also for test implementation.
As depicted in Figure 2.20, TTCN-3 consists of a textual core notation
[ETS02a] and several presentation formats like the MSC-based Graphical
Presentation Format for TTCN-3 (GFT) [ETS03a] or the Tabular Presen-
tation Format (TFT) [ETS02b]. Furthermore, TTCN-3 allows —in addition
to its own data model— to use data described by other languages. This
eases testing of systems which were implemented using, e.g., the Abstract
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Figure 2.20: Overall Picture of TTCN-3



28 2. Foundations

Syntax Notation One (ASN.1) or the Common Object Request Broker Ar-
chitecture (CORBA) [OMG04a] Interface Definition Language (IDL).
In the following, the concepts of TTCN-3 and its core notation will be ex-
plained by two test suites for functional testing of an Inres Initiator protocol
entity implementation. The test system has to play the role of an Inres Re-
sponder entity and of an Initiator user, since the SUT is accessed via the
Service Access Points ISAP and MSAP.
For communicating with the SUT, types and values of the exchanged mes-
sages must be defined. This will be demonstrated in the next section. After-
wards, in Section 2.5.2, it will be explained how test behaviour is described
in TTCN-3. Since TTCN-3 uses a syntax which is similar to ordinary pro-
gramming languages like, e.g., C++ [ISO98], it is assumed that the reader
is familiar with common constructs like comments, (structured) data types,
assignments or parentheses for delimiting blocks.

2.5.1 Data and Type Definition

TTCN-3 uses modules as a top-level structure. Figure 2.21 shows the module
inresUserDefinitions. It contains only the definition of the new type UserPDU
(Line 2) and a constant value (Line 3). The definitions in this module
describe the payload data which can be transferred by an Inres user through
the Inres service. In this case, floating point numbers are transferred.

1 module inresUserDefinitions {
2 type float UserPDU; // Type of actual data to transfer
3 const UserPDU somePayload:=0.42; // Payload of type UserPDU
4 }

Figure 2.21: TTCN-3 Module for Defining Data of the Inres User

Definitions inside modules can be imported by other modules. Figure 2.22
demonstrates in lines 2–4, how module inresDefinitions imports selectively
the definition of type UserPDU from module inresUserDefinitions.
For further sub-structuring of modules, TTCN-3 allows grouping of defini-
tions. Figure 2.23, which is —as indicated by the line numbers— a con-
tinuation of module inresDefinitions, provides an example for the group

1 module inresDefinitions {
2 import from inresUserDefinitions {
3 type UserPDU; // Type of actual data to transfer at User Level
4 }

Figure 2.22: Importing Definitions from the Inres User Module
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5 group InitiatorUserDefinitions {
6 // The messages
7 type record ICONreq {};
8 type record IDATreq { UserPDU iData };
9 type record ICONconf {};

10 type record IDISind {};
11
12 // The port type
13 type port InresSAP message {
14 out ICONreq, IDATreq;
15 in ICONconf, IDISind;
16 }
17 }

Figure 2.23: Definitions for the Initiator and Initiator User Communication

statement. Grouping has no effects on namespaces, but, e.g., an import
statement may refer to a whole group. Furthermore, groups aid the human
reader to identify elements which are related to each other, especially if a
descriptive name for the group (as in Line 5) is chosen.
In group InitiatorUserDefinitions, messages which are exchanged between the
Inres Initiator entity and the Initiator user are defined (lines 7–10). Mes-
sage types are defined using ordinary data types, e.g. an empty record for
messages without parameters. In this case, just the type information itself
is used to carry information. For messages with parameters, field elements
of a record may be used for carrying the parameters. For example, in Line 8
of Figure 2.23, the IDATreq message has a payload of type UserPDU.
Furthermore, port types can be defined to specify communication points
with respect to type and direction of messages which are exchanged through
them. In lines 13–16, InresSAP is defined as a port type. It will be used
later-on as Point of Control and Observation (PCO) for interfacing the ISAP
Service Access Point . The message keyword declares that the port is used
for message-based communication.14 The out keyword specifies that the
messages ICONreq and IDATreq can be sent by the test system, whereas in
denotes that messages ICONconf and IDISind can only be received.
Figure 2.24 shows a group with definitions for the communication between
an Inres Responder and the Medium service. At that interface (MSAP),
only the two messages MDATreq and MDATind are exchanged (definitions
in lines 38–45). The payload of these messages is more complex. It is of
type InresPDU, which is defined as a record type in lines 31–35. The last
two fields of this record are marked optional, which means that they may

14TTCN-3 supports also procedure-based communication. However, the corresponding
syntax is not described in this thesis, since the semantics does not differ significantly from
message-based communication.
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18 group ResponderDefinitions {
19 type enumerated InresPDUType { CR(1), CC(2), DR(3), DT(4), AK(5) };
20 type enumerated SequenceNumber { zero(0), one(1) };
21
22 function toggle(SequenceNumber number) return SequenceNumber {
23 if (number==zero) {
24 return one;
25 }
26 else {
27 return zero;
28 }
29 }
30
31 type record InresPDU {
32 InresPDUType iPDUType,
33 SequenceNumber seqNo optional,
34 UserPDU iData optional
35 }
36
37 // The messages
38 type record MDATreq { InresPDU mData };
39 type record MDATind { InresPDU mData };
40
41 // The port type
42 type port MediumSAP message {
43 out MDATreq;
44 in MDATind;
45 }
46 }

Figure 2.24: Definitions for the Responder and Medium Communication

be omitted. While the type of the last field (UserPDU) has been previously
imported (Line 3 of Figure 2.22), the first two fields are defined as enu-
meration types in lines 19–20. The sequence number is used by the Inres
Initiator implementation to identify InresPDUs. Since sequence numbers are
binary, they are changed by toggling. To enable a test case to check whether
the IUT changes a sequence number correctly, the inresDefinitions module
provides not only the type definition but also a function to toggle a value
of type SequenceNumber. As depicted in lines 22–29, in TTCN-3, this can
be written down in a style of an ordinary programming language. (More
detailed examples of behaviour specification are provided in Section 2.5.2.)
The group in Figure 2.25 contains template definitions. Templates ease
specification of test data which is sent or received. While sending requires
concrete values, receiving of data may be eased by the possibility to specify
value ranges or to use wildcards. Templates allow to define fully specified
values as well as a set of expected values based on matching mechanisms,
like regular expressions for strings or using “?” to describe any value.
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47 group TemplateDefinitions {
48 template MDATind ConnectionRequest:={
49 mData:={ iPDUType:=CR, seqNo:=omit, iData:=omit }
50 }
51 template MDATreq ConnectionConfirmation:={
52 mData:={ iPDUType:=CC, seqNo:=omit, iData:=omit }
53 }
54 template MDATreq DisconnectionRequest:={
55 mData:={ iPDUType:=DR, seqNo:=omit, iData:=omit }
56 }
57 template MDATind DataTransfer(UserPDU data, SequenceNumber no):={
58 mData:={ iPDUType:=DT, seqNo:=no, iData:=data }
59 }
60 template MDATreq DataAcknowledgement(SequenceNumber number):={
61 mData:={ iPDUType:=AK, seqNo:=number, iData:=omit }
62 }
63 }

Figure 2.25: Definition of Templates

The template definition in lines 48–50 describes an MDATind service prim-
itive which encapsulates an Inres Connection Request PDU. A Connection
Request PDU does not require a sequence number or a payload. Thus, these
two optional fields are omitted by using the keyword omit. Templates may
also be parameterised as shown in lines 57–62, where only the iPDUType is
fixed, the values for the remaining fields may be provided later-on by using
parameters.
The module inresDefinitions does not contain any templates using matching
mechanisms. In next section, examples for wildcards are provided. Further-
more, the usage of so called inline templates as an alternative to the given
template definitions will be demonstrated there.
Finally, Figure 2.26 depicts the definition of a component type which is
later-on used as Test System Interface, i.e. all ports through which the test
system accesses the SUT. For testing an Initiator implementation, ports
of type InresSAP and MediumSAP are required. Lines 64–67 of Figure 2.26
denote that a component of type InresSystemType contains instances of these
port types named ISAP and MSAP.

64 type component InresSystemType {
65 port InresSAP ISAP;
66 port MediumSAP MSAP;
67 }
68 } // End of module inresDefinitions

Figure 2.26: Definition of the Test System Interface.
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2.5.2 Behaviour Definition

After data types and values have been described, they shall be used in a test
suite. The basic behavioural concepts of TTCN-3 are introduced by a test
suite which is designed for a local test architecture. Thereafter, a test suite
for a distributed test architecture is presented to explain TTCN-3 support
for distributed testing.
The local test architecture which is used in the first example is depicted in
Figure 2.27. It contains just one test component, the Main Test Component
(MTC). The MTC emulates an Initiator user and an Inres Responder entity.
Thus, it consists of the port ISAP and MSAP which can be regarded as PCOs
according to CTMF. Thus, queues are used for receiving.
In addition to the ports of the MTC, the whole TTCN-3 test system has an
interface to the SUT, the Test System Interface. For local test architectures,
it is usually identical to the MTC’s interface. This interface is divided into
an Abstract and a Real Test System Interface. While the abstract one is
defined using TTCN-3 (cf. Figure 2.26), the Real Test System Interface has
to be implemented outside of TTCN-3 involving, e.g., hardware interfaces.
For test execution, the ports of the MTC have to be associated (mapped) to
the ports of the Test System Interface.
As depicted in Figure 2.28, the test suite for the local test architecture is
located in a module of its own (Line 1). To gain access to all common
definitions of message types, templates and port types for Inres, the inres-
Definition module is imported in Line 2 and in lines 3–5, the user defined
payload is selectively imported from module inresUserDefinitions. Lines 6-11
demonstrate the declaration of module parameters, which can be passed to
a module when actually using it. Furthermore, it is possible to provide de-
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Figure 2.27: TTCN-3 Test System for a Local Inres Test Architecture
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1 module inresLocal {
2 import from inresDefinitions all;
3 import from inresUserDefinitions {
4 const somePayload;
5 }
6 modulepar {
7 integer transmissions:=100;
8 float maxRetransmissionTime:=20.0;
9 float maxExecutionTime:=2000.0;

10 SequenceNumber initialSequenceNumber:=one;
11 }

Figure 2.28: Inres Test Suite for Local Test Architecture: Module Parameter

fault values for them. In the inresLocal module, the following parameters are
used: transmissions for the number of data transmissions that shall be per-
formed for testing the SUT’s data transmission capabilities; an upper limit
for the duration of retransmissions (maxRetransmissionTime); an upper limit
for the overall execution time of a test case (maxExecutionTime); and the
initialSequenceNumber of the Initiator implementation when transmitting a
PDU via the Medium service.
Figure 2.29 shows the TTCN-3 testcase construct. It embraces the be-
haviour description of test case bulkDataTransfer. The purpose of this test
case is to test the repeated correct transmission of data from ISAP to MSAP.
In Line 12, the test case parameter iterations is declared which is used inside
the test case to determine the number of repetitions for transferring data.
Furthermore, the runs on keyword specifies that this test case runs on a
test component which is of type InresSystemType. The component on which
a testcase executes is implicitly considered as MTC. Moreover, the com-
ponent type of the MTC is also taken as type of the Test System Interface.
Next, in lines 13–15, local variables are defined: a counter is used to track the
number of retransmissions of lost PDUs, which are detected by deviations
from the expectedSequenceNumber. The latter is initialised using a module
parameter. To be able to extract the actual sequence number from a received
MDATind PDU, variable receivedPDU is used to store such PDUs.
In order to guarantee the termination of a test case, a timer can be used
to detect that the SUT does not respond anymore. The definition of such
a timer T is demonstrated in Line 16. TTCN-3 represents time as floating
point numbers (type float) and uses seconds as time unit.
When specifying a test case, it is desirable to focus on the expected be-
haviour only. To avoid cluttering up a test case, it is possible to shift the
description of any invalid or unexpected behaviour into a so called altstep.
An altstep can be activated as a default behaviour for treating any observed
events which are not explicitly specified by a test case. Line 17 depicts the
activation of the default failOrInconc. Since that default also handles time-
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12 testcase bulkDataTransfer(integer iterations) runs on InresSystemType {
13 var integer counter;
14 var SequenceNumber expectedSequenceNumber:=initialSequenceNumber;
15 var MDATind receivedPDU;
16 timer T;
17 var default failOrInconcDefault:=activate(failOrInconc(T));
18 map(self:ISAP, system:ISAP);
19 map(self:MSAP, system:MSAP);
20 Preamble();
21 for(var integer i:=1; i<=iterations; i:=i+1) {
22 ISAP.send(IDATreq:{somePayload});
23 counter:=1;
24 T.start(maxRetransmissionTime);
25 alt {
26 [ ] MSAP.receive(DataTransfer(somePayload, expectedSequenceNumber)) {
27 T.stop;
28 MSAP.send(DataAcknowledgement(expectedSequenceNumber));
29 expectedSequenceNumber:=toggle(expectedSequenceNumber);
30 }
31 [counter<=4] MSAP.receive(DataTransfer(somePayload,?))
32 −> value receivedPDU {
33 MSAP.send(DataAcknowledgement(receivedPDU.mData.seqNo));
34 counter:=counter+1;
35 repeat;
36 }
37 [counter>4] MSAP.receive(DataTransfer(somePayload,?)) {
38 setverdict(fail);
39 stop;
40 }
41 }
42 }
43 setverdict(pass);
44 Postamble();
45 deactivate(failOrInconcDefault);
46 }

Figure 2.29: Inres Test Suite for Local Test Architecture: Test Case

outs, the local Timer T, which has been defined in the preceding line, is
passed as an additional parameter. The result of the activate statement
is stored as a handle in variable failOrInconcDefault to be able to deactivate
that default if it is not desired anymore.
To complete the test case set-up, the test component’s ports need to be
mapped to the ports of the Test System Interface. This is performed using
the map statement in lines 18 and 19.
Before the test behaviour which realises the test purpose can be executed,
the Inres Initiator implementation must perform a connection establishment.
This is achieved in Line 20 by calling the function Preamble.
Then, the actual test behaviour starts. For obtaining iterations repetitions of
the behaviour in the enclosed block, an ordinary for loop is used (Line 21).
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In Line 22, a stimulus is send via port ISAP to the SUT using the send
statement. The data to transfer is specified using an inline template: Ac-
cording to its definition in Figure 2.23, an IDATreq message requires just one
parameter. It is provided using the “:{. . . }” inline template notation.
After the stimulus has been sent, the counter for counting retransmission is
set to 1 and Timer T is started (lines 23–24). The duration of the timer is
determined by the module parameter maxRetransmissionTime.
The alt block in lines 25–41 describes possible alternative observations and
resulting reactions. Each of the blocks which are prefixed by a “[. . . ]” guard
defines a branch of an alternative.
The first alternative (lines 26–30) is that a message with correct payload
and expectedSequenceNumber is received at port MSAP. This is specified
using a receive statement and the DataTransfer template. The reception of
a message which matches this template is a correct transmission scenario,
thus the Timer T is stopped (Line 27). Next, the message needs to be
acknowledged to the SUT via port MSAP as shown in Line 28. Since the
data transfer was successful, expectedSequenceNumber is then switched to
the next valid sequence number by calling the function toggle.
The second branch of the alternative (lines 31–36) is guarded by the boolean
expression counter<=4 which must evaluate to true to enable the branch.
The expression assures that the maximum number of retransmissions has
not been reached, yet. The DataTransfer template used in the receive op-
eration contains a “?” wildcard as parameter (Line 31). This matches any
sequence number. The semantics of an alt construct is that the alternative
branches are evaluated from top to bottom and the first matching one is
taken. Thus, the above wildcard will never be applied to an expected se-
quence number, because that would have been already matched by the first
alternative branch. Hence, only unexpected sequence numbers are matched.
In this case, the Medium service lost the acknowledgement; thus, it has to
be resent. This happens in Line 33 by sending an acknowledgement for the
received seqNo which is extracted from the receivedPDU. (While in Line 26,
the value of the received message has been discarded, in Line 32, it is stored
in receivedPDU due to the “-> value” construct appended to the preceding
receive statement.) Finally, the counter of retransmissions incremented.
The repeat statement in Line 35 is responsible for a re-evaluation of the
alternative, i.e. the alternative starts again from top.
The last alternative of the alt statement (lines 37–40) is also guarded and
thus matches only if the SUT resends a PDU more than four times. This
is invalid behaviour, hence, the setverdict statement (Line 38) is used to
assign a fail verdict to the result of the test case. Furthermore, the test
terminates immediately by using the stop statement (Line 39).
If none of the alternative branches matches, the alt block is re-evaluated
from the beginning until an event occurs which matches a branch. To achieve
a deterministic evaluation of alternatives, TTCN-3 freezes the communica-
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47 altstep failOrInconc(timer T) runs on InresSystemType {
48 [ ] ISAP.receive(IDISind:{}) {
49 setverdict(inconc);
50 stop;
51 }
52 [ ] ISAP.receive {
53 setverdict(fail);
54 stop;
55 }
56 [ ] MSAP.receive {
57 setverdict(fail);
58 stop;
59 }
60 [ ] T.timeout {
61 setverdict(fail);
62 stop;
63 }
64 }

Figure 2.30: Inres Test Suite for Local Test Architecture: Altstep

tion ports and state of timers and evaluates a snapshot of that situation.
This avoids race conditions due to events occuring during evaluation of an
alternative. If a branch matches, it is taken and behaviour continues just
after the alt block unless the branch contains a repeat statement.
If all iterations of the for loop were successful, the test verdict can be set to
pass (Line 43) and the connection can be released by calling the function
Postamble (Line 44). Finally, the activated default failOrInconcDefault can
be deactivated as shown in Line 45.
The alt statement in Figure 2.29 did not show all possible alternative
branches which are handled by the test case. Additional branches are con-
tributed by the default failOrInconc which is activated in Line 17. Figure 2.30
provides the definition of this default.
Defaults are defined using the altstep statement. If altsteps involve com-
munication operations or component timers, they require the specification
of a component type on which they may be executed (runs on in Line 47).
Local timers which are handled by an altstep can be passed as a parameter.
Altsteps are only evaluated if the branches of the regular alt statement did
not match, i.e. altsteps are appended at the end of an alt statement. The
given altstep is quite simple. The first alternative (lines 48–51) treats recep-
tion of an IDISind message which is specified using an empty inline template.
This behaviour is valid since the IUT may decide to release a connection if
it considers the Medium service as too unreliable. Thus, an inconclusive
verdict is set in Line 49. An inconclusive verdict denotes behaviour which
is valid but due to which it was not able to reach the test purpose. For this
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reason, test execution is terminated using the stop statement. All other
branches of the altstep lead to a fail verdict. These cases occur if a message
was not consumed by one of the preceding branches and thus is consumed
by either receive statement in Line 52 or 56. The timeout statement in
Line 60 catches the expiration of Timer T. This is an indication that the
SUT does not respond anymore.
Figure 2.31 presents the pre- and postambles that are called in test case
bulkDataTransfer. Such supplemental behaviour is defined in ordinary func-
tions. Since they contain also communication operations, the component
type on which they may be executed has to be specified using the runs
on statement. Apart from that, Figure 2.31 does not contain any unex-
pected TTCN-3 statements. Though, it shall be noted that —except due to
defaults— no verdicts are set in the pre- and postambles. The intent is just
to establish or respectively release a connection. Nevertheless, the ability of
the IUT to perform this correctly has also to be tested. It is assumed that
this has been ensured before by the test cases connectionEstablishment and
connectionRelease. Their behaviour is not presented here.
Finally, the Module Control Part is shown in Figure 2.32. The control part
can be used to determine ordering and conditions for executing test cases. In
the example, first a variable of type verdicttype is defined (Line 90). Then,

65 function Preamble() runs on InresSystemType {
66 timer T;
67 var default failOrInconcDefault:=activate(failOrInconc(T));
68 ISAP.send(ICONreq:{});
69 T.start(maxRetransmissionTime);
70 alt {
71 [ ] MSAP.receive(ConnectionRequest) {
72 MSAP.send(ConnectionConfirmation);
73 repeat;
74 }
75 [ ] ISAP.receive(ICONconf:{}) {
76 T.stop;
77 }
78 }
79 deactivate(failOrInconcDefault);
80 }
81
82 function Postamble() runs on InresSystemType {
83 MSAP.send(DisconnectionRequest);
84 }
85
86 testcase connectionEstablishment() runs on InresSystemType { /∗ ... ∗/ }
87
88 testcase connectionRelease() runs on InresSystemType { /∗ ... ∗/ }

Figure 2.31: Inres Test Suite for Local Test Architecture: Pre-/Postamble
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89 control {
90 var verdicttype myVerdict;
91 log(”Starting test execution ... ” );
92 myVerdict:=execute(connectionEstablishment(), maxExecutionTime);
93 if (myVerdict==pass) {
94 myVerdict:=execute(connectionRelease(), maxExecutionTime);
95 }
96 if (myVerdict==pass) {
97 myVerdict:=execute(bulkDataTransfer(transmissions), maxExecutionTime);
98 }
99 log(”Test execution terminated”);

100 }
101 } // End of module inresLocal

Figure 2.32: Inres Test Suite for Local Test Architecture: Module Control

in Line 91, a character string is written to the test log. Afterwards, the test
case connectionEstablishment is executed (Line 92). This is achieved by using
the execute statement with the name of the test case as first parameter.
The optional second parameter (maxExecutionTime) can be used to restrict
the duration of the test case execution. If that limit is exceeded, an error
verdict is set by the runtime system and test execution aborts. The execute
statement returns the test case’s verdict. The subsequent test cases are only
executed if the previous ones yielded a pass verdict (lines 93–98).

2.5.3 Defining Distributed Tests

The distributed test architecture which is used by the second test suite is
depicted in Figure 2.33. Instead of a single test component, it consists of a
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Figure 2.33: TTCN-3 Test System for a Distributed Inres Test Architecture
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1 module inresDistributed {
2 import from inresDefinitions all ;
3 import from inresUserDefinitions {
4 const somePayload;
5 }
6 modulepar {
7 integer transmissions:=100;
8 float maxRetransmissionTime:=20.0;
9 float maxExecutionTime:=2000.0;

10 SequenceNumber initialSequenceNumber:=one;
11 }
12
13 // Definitions related to Communication TC<−>TC
14 type port CoordinationPoint message {
15 inout boolean; // Used for coordination
16 }
17
18 group ComponentDefinitions {
19 // Upper Tester
20 type component InitiatorUserType {
21 port InresSAP ISAP;
22 port CoordinationPoint CP;
23 timer T;
24 }
25
26 // Lower Tester
27 type component ResponderType {
28 port MediumSAP MSAP;
29 port CoordinationPoint CP;
30 }
31 }

Figure 2.34: Additional Types for Distributed Inres Test Architecture

Main Test Component (MTC) and one Parallel Test Component (PTC).15

The MTC plays the role of an Initiator user, the PTC emulates a Responder.
To achieve their common goal, both Test Components (TCs) run concur-
rently and communicate with each other via the coordination points CP.
While the Test System Interface remains the same as for the local architec-
ture, the type of the test components has changed: the MTC consists of the
ports ISAP and CP, the PTC of the ports MSAP and CP.
The beginning of the test suite for the distributed test architecture is shown
in Figure 2.34. Lines 2–11 are the same as for the local test suite. However,
an additional port type has to be defined for the CoordinationPoint (lines
14–16). For simplicity, the coordination between the two TCs is performed
by exchanging boolean values in both directions (inout) as shown in Line 15.

15Note that TTCN-3 makes no assumptions where the TCs are actually located, i.e.
both TCs may be located together on the same test system node or distributed on two
nodes of a test system. TTCN-3 gives the test implementor the freedom to decide on this.
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32 testcase bulkDataTransfer(integer iterations)
33 runs on InitiatorUserType system InresSystemType {
34 var default failOrInconcDefault:=activate(initiatorFailOrInconc());
35 var ResponderType responder:=ResponderType.create;
36 map(self:ISAP, system:ISAP);
37 map(responder:MSAP, system:MSAP);
38 connect(self:CP, responder:CP);
39 responder.start(bulkDataTransferResponder(iterations));
40 initiatorUserPreamble();
41 CP.send(boolean:true);
42 CP.receive(boolean:true);
43 for(var integer i:=1; i<=iterations; i:=i+1) {
44 ISAP.send(IDATreq:{somePayload});
45 T.start(maxRetransmissionTime);
46 CP.receive(boolean:true);
47 CP.send(boolean:true);
48 T.stop;
49 }
50 all component.done;
51 setverdict(pass);
52 initiatorUserPostamble();
53 deactivate(failOrInconcDefault);
54 }

Figure 2.35: Inres Test Suite: Behaviour of Main Test Component

Additional component types are required for the two TCs. For the MTC,
the InitiatorUserType is defined in lines 20–24. It consists of an ISAP port
instance for communicating with the SUT and a CP port instance for coor-
dination with the PTC. Additionally, Line 23 demonstrates that a compo-
nent may also contain variables or, e.g., a timer which is shared by any test
behaviour (test cases, functions, altsteps) that executes on the same compo-
nent instance. The ResponderType definition in lines 27–30 is intended for
the PTC. It consists of an MSAP and a CP port instance.
Now, the test case can be specified as given in Figure 2.35. By definition, a
TTCN-3 testcase runs on the MTC component. Thus, the component type
specified via the runs on keyword is InitiatorUserType. Since for distributed
testing, the Test System Interface differs from the MTC component type, it
has to be specified separately using the system keyword (Line 33).
Like for the local test architecture, a default is activated in Line 34. Next,
in Line 35, a new instance of the PTC of type ResponderType is created and
a reference to this component is stored in variable responder.
Test set-up continues by mapping the own ISAP port to the Test System
Interface (Line 36). In the following line, the MTC maps the PTC’s (ref-
erenced by responder) MSAP port to the Test System Interface. Then, the
MTC connects its own CP port to the PTC’s CP port by using the connect
statement in Line 38. Finally, the behaviour of function bulkDataTransfer-
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55 function bulkDataTransferResponder(integer iterations)
56 runs on ResponderType {
57 var integer counter;
58 var SequenceNumber expectedSequenceNumber:=initialSequenceNumber;
59 var MDATind receivedPDU;
60 var default failDefault:=activate(responderFail());
61 responderPreamble();
62 CP.receive(boolean:true);
63 CP.send(boolean:true);
64 for(var integer i:=1; i<=iterations; i:=i+1) {
65 counter:=1;
66 alt {
67 [ ] MSAP.receive(DataTransfer(somePayload,expectedSequenceNumber)) {
68 MSAP.send(DataAcknowledgement(expectedSequenceNumber));
69 expectedSequenceNumber:=toggle(expectedSequenceNumber);
70 CP.send(boolean:true);
71 CP.receive(boolean:true);
72 }
73 [counter<=4] MSAP.receive(DataTransfer(somePayload,?))
74 −> value receivedPDU {
75 MSAP.send(DataAcknowledgement(receivedPDU.mData.seqNo));
76 counter:=counter+1;
77 repeat;
78 }
79 [counter>4] MSAP.receive(DataTransfer(somePayload,?)) {
80 setverdict(fail);
81 stop;
82 }
83 }
84 }
85 setverdict(pass);
86 responderPostamble();
87 deactivate(failDefault);
88 }

Figure 2.36: Inres Test Suite: Behaviour of Parallel Test Component

Responder is started on the created responder component. The set-up of the
distributed test components is now completed.
The communication behaviour of test case bulkDataTransfer is basically com-
parable to the one which can be obtained from the corresponding test case
for the local test architecture by restricting on behaviour related to the ISAP
port, i.e. the MTC sends just the IDATreq stimulus (Line 44). Though, as
shown in lines 41–42 and 46–47 of Figure 2.35, additional handshake mes-
sages are used to synchronise the MTC’s behaviour with the PTC: the first
handshake takes care that one test component does not start before the
other is ready. Via the second handshake, the PTC informs the MTC that
it has received the correct data and thus, the MTC may cancel its Timer T
(Line 48) and shall proceed with sending more data.
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Line 50 contains a further addition in comparison to the local test case:
the all component.done statement waits for all PTCs to terminate. A
PTC terminates either due to a stop statement or if the function which
was used to start a PTC finishes. Furthermore, when a TC terminates, its
verdict contributes to the global test verdict. Each TC maintains its own
local verdict. Thus, to obtain a final global verdict, the local verdicts of
all TCs need to be merged. For this, but also for setting a local verdict
with the setverdict statement in general, special overwriting rules apply.
The rules define that a verdict may only get worse, but never be upgraded.
For example, a pass verdict may be downgraded by an inconclusive or fail
verdict. But, once an inconclusive or fail verdict has been set, it cannot be
upgraded anymore by setting, e.g., a pass verdict. The descending order of
verdicts is none, pass, inconc, fail. The none verdict is the initial value
of a local verdict. A special error verdict can only be set by the test system
itself to indicate a severe internal error.
The behaviour for the PTC which runs on type ResponderType is shown in
Figure 2.36. Like for the MTC, the behaviour of the PTC is comparable to
the local test case restricted to the MSAP port. The handshake communi-
cation operations in lines 62–63 and 70–71 are symmetrical to the ones of
the MTC.
As shown in Line 34 of Figure 2.35 and Line 60 of Figure 2.36, each TC
activates its own default altsteps. Their definition is depicted in Figure 2.37.

89 altstep initiatorFailOrInconc () runs on InitiatorUserType {
90 [ ] ISAP.receive(IDISind:{}) {
91 setverdict(inconc);
92 stop;
93 }
94 [ ] ISAP.receive {
95 setverdict(fail);
96 stop;
97 }
98 [ ] T.timeout {
99 setverdict(fail);

100 stop;
101 }
102 }
103
104 altstep responderFail() runs on ResponderType {
105 [ ] MSAP.receive {
106 setverdict(fail);
107 stop;
108 }
109 }

Figure 2.37: Inres Test Suite for Distributed Test Architecture: Altsteps
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Since Timer T is now part of the InitiatorUserType component instance, it
needs not to be passed as parameter into the altstep, but can be used directly.
Care has to be taken to avoid blocking of a TC. For example, the stop
statement in Line 107 of Figure 2.37 leads to a termination of the PTC. As
a result, the MTC may then wait infinitely for a handshake message of the
PTC. In the sample test suite, this is solved by the MTC Timer T which
eventually expires if the PTC has stopped. With respect to termination,

110 function initiatorUserPreamble() runs on InitiatorUserType {
111 var default failOrInconcDefault:=activate(initiatorFailOrInconc());
112 T.start(maxRetransmissionTime);
113 ISAP.send(ICONreq:{});
114 ISAP.receive(ICONconf:{});
115 T.stop;
116 CP.send(boolean:true);
117 CP.receive(boolean:true);
118 deactivate(failOrInconcDefault);
119 }
120
121 function responderPreamble() runs on ResponderType {
122 var default failDefault:=activate(responderFail());
123 alt {
124 [ ] MSAP.receive(ConnectionRequest) {
125 MSAP.send(ConnectionConfirmation);
126 repeat;
127 }
128 [ ] CP.receive(boolean:true);
129 }
130 CP.send(boolean:true);
131 deactivate(failDefault);
132 }
133
134 function initiatorUserPostamble() runs on InitiatorUserType {
135 CP.receive(boolean:true);
136 CP.send(boolean:true);
137 }
138
139 function responderPostamble() runs on ResponderType {
140 MSAP.send(DisconnectionRequest);
141 CP.send(boolean:true);
142 CP.receive(boolean:true);
143 }
144
145 testcase connectionEstablishment()
146 runs on InitiatorUserType system InresSystemType { /∗ ... ∗/ }
147
148 testcase connectionRelease()
149 runs on InitiatorUserType system InresSystemType { /∗ ... ∗/ }

Figure 2.38: Distributed Inres Test Suite: Post-/ Preambles
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150 control {
151 var verdicttype myVerdict;
152 log(”Starting test execution ... ”);
153 myVerdict:=execute(connectionEstablishment(), maxExecutionTime);
154 if (myVerdict==pass) {
155 myVerdict:=execute(connectionRelease(), maxExecutionTime);
156 }
157 if (myVerdict==pass) {
158 myVerdict:=execute(bulkDataTransfer(transmissions), maxExecutionTime);
159 }
160 log(”Test execution terminated”);
161 }
162 } // End of module inresDistributed

Figure 2.39: Distributed Inres Test Suite: Module Control

TTCN-3 treats the MTC differently than the other PTCs. If the MTC
terminates, all PTCs are automatically terminated as well.
The pre- and postambles of the TCs are provided in Figure 2.38. Like the
test cases and altsteps, they are also split variants of the local test suite and
make as well additional use of coordination messages. The Module Control
Part shown in Figure 2.39 is reused from the local test suite without any
modifications.

2.5.4 Test Implementation

TTCN-3 can not only be used for test specification, but also for test imple-
mentation. The TTCN-3 core notation can be translated into executable
code by tools. However, TTCN-3 test suites are abstract, thus additional
system specific information needs to be added. To ease test implementation
across platforms, two different sets of interfaces are standardised.
The TTCN-3 Runtime Interface (TRI) [ETS03c] provides interfaces for ac-
cessing a Platform Adaptor and a SUT Adaptor from within a TTCN-3
runtime system. A Platform Adaptor provides standardised access to the
underlying execution platform, e.g. to timers based on an operating sys-
tem’s clock. Thus, the Platform Adaptor facilitates an easy implementation
of TTCN-3 timers. An SUT Adaptor is responsible for implementing the
Real Test System Interface through which the actual bit strings of a message
are exchanged.
The TTCN-3 Control Interface (TCI) [ETS03d] provides several interfaces
through which a TTCN-3 runtime system can access, e.g. logging facilities,
request the creation of (remote) PTCs, or encode/decode abstract TTCN-3
message definitions into actual bit strings and vice versa. For sending a
message, first the TCI can be called to obtain a bit string which is then
send using the TRI. For receiving, the order is reverse.
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2.6 Summary

In this chapter, foundations of testing have been explained and an introduc-
tion into the Conformance Testing Methodology and Framework (CTMF),
which describes a black-box testing approach, has been given. The prob-
lem of testing non-functional, in particular real-time properties has been
discussed. For specifying hard real-time properties in a formal manner,
an overview on the Message Sequence Chart (MSC) language was given.
Supplementary, an MSC extension to enable the specification of periodic
real-time requirements has been proposed. Furthermore, the Inres protocol
was introduced as an example of a protocol for communication systems. It
is used as a case study in the subsequent chapters. Finally, an introduc-
tion into the Testing and Test Control Notation version 3 (TTCN-3) for
specifying and implementing distributed functional tests was provided.





Chapter 3

TIMEDTTCN-3

The development of the Testing and Test Control Notation (TTCN-3) con-
centrated on functional testing. Thus, some major concepts needed for
real-time testing are missing. This chapter tries to close this gap by propos-
ing TIMEDTTCN-3 as a real-time extension for TTCN-3. TIMEDTTCN-3
introduces a new test verdict to judge non-functional behaviour. Absolute
time is supported as a means to measure time and to calculate durations.
The execution of statements can be delayed for defining time dependent test
behaviour. The notion of absolute time benefits from support for the spec-
ification of clock synchronisation for test components. Finally, a means for
the online and offline evaluation of real-time properties is provided.
The structure of this chapter is as follows: First, in Section 3.1, the need
of a TTCN-3 real-time extension is motivated. Section 3.2 gives a first im-
pression of TIMEDTTCN-3 by providing a real-time test case example which
is used to explain the TIMEDTTCN-3 features. Then, in Section 3.3, ver-
dicts for non-functional behaviour are discussed. Section 3.4 describes the
time extensions that are part of TIMEDTTCN-3. Afterwards, in Section 3.5,
two evaluation methods for real-time properties are presented. For support-
ing graphical test case specification, the Graphical Presentation Format for
TIMEDTTCN-3 (TIMEDGFT) is briefly introduced in Section 3.6. The tab-
ular presentation of TIMEDTTCN-3 is discussed in Section 3.7. Finally, a
summary and a comparison to related approaches (Section 3.8) are given.
This chapter is based on a joint work published in [DGN02, DGN03].

3.1 Specifying Real-Time Tests with TTCN-3

Even though TTCN-3 was not designed for real-time testing, it has neverthe-
less been used for specifying real-time tests [DST04]. Even its predecessor,
the Tree and Tabular Combined Notation (TTCN-2), has been successfully
used to control external devices for performance testing [GKS00].



48 3. TIMEDTTCN-3

However, using standard TTCN-3 for specifying real-time tests has some
limitations. For being able to assess time properties within TTCN-3, its
timer construct has to be used intensively. The drawback of using timers is
that readability of test specifications suffers significantly, because timers are
simply not intended for testing real-time properties. Furthermore, timers
are always local to a test component, thus, it is impossible to test real-time
properties which are imposed on events that occur at different components.
The deteriorated readability of a test case which uses timers for assessing
real-time properties shall be illustrated by an example [HKN01]. The test
purpose is to test that the response time between stimulating the SUT with
message m1 and receiving message m2 is within the interval [t1,t2] seconds.
(A corresponding MSC is shown Figure 3.1a.)
The resulting timer-based TTCN-3 test case is shown in Figure 3.1b. The
timer Tmin is used to verify that message m2 is not received too early after
sending message m1 in Line 3. This is checked by the first alt block in
lines 5–10: if timer Tmin expires (Line 6), everything is fine and execution
may continue with the second alt block (lines 11–19). However, if instead
message m2 is received (Line 7), this is too early and the fail verdict is set
(Line 8). The second alt block (lines 11–19) is reverse: if message m2 is
received (Line 12) prior to a timeout, the test passed and the still running
timer Tmax is stopped (line 13–14). However, if timer Tmax expires, the
test failed (lines 16–17), because the upper bound real-time requirement was
violated.

PCO SUT

m1

[t1,t2]

m2

msc ResponseTime

(a) Real-Time Requirement

1 timer Tmin, Tmax;
2 Tmax.start(t2);
3 PCO.send(m1);
4 Tmin.start(t1);
5 alt {
6 [ ] Tmin.timeout;
7 [ ] PCO.receive(m2) {
8 setverdict(fail);
9 }

10 }
11 alt {
12 [ ] PCO.receive(m2) {
13 Tmax.stop;
14 setverdict(pass);
15 }
16 [ ] Tmax.timeout {
17 setverdict(fail);
18 }
19 }

(b) TTCN-3 Test Case

Figure 3.1: Testing a Response Time Requirement Using TTCN-3 Timers
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The example demonstrates that it is possible to use TTCN-3 for testing sim-
ple real-time requirements. However, the resulting test case is very clumsy:
in addition to the two lines which are required for specifying the functional
behaviour of stimulus and expected observation, 17 further lines are neces-
sary for testing the non-functional behaviour. Moreover, it is very hard to
identify the actual properties which shall be tested, because the test case is
bloated and functional and non-function behaviour description is mixed.
Furthermore, when using timers, the measurement of durations is influenced
by the TTCN-3 snapshot semantics and by the order in which receive and
timeout operations are ordered in the alt statement. TTCN-3 makes no
assumptions about the duration for taking and evaluating a snapshot. Thus,
exact times cannot be measured using ordinary timers.
As a result, it can be summarised that timers shall be used for detecting or
provoking the absence of signals and to take care that a test case eventually
terminates if it is blocked for some reason, but not for specifying real-time
requirements. Thus, for distributed real-time testing, other concepts for
dealing with time are preferable. A possible solution, which combines the
ease of TTCN-3 with real-time concepts, is TIMEDTTCN-3.

3.2 An Inres-based Example

The concepts of TIMEDTTCN-3 will be explained by a test suite for the Inres
protocol. The test suite is designed for the distributed test architecture
which has been described on pages 38–38. To enhance the readability of
this chapter, a copy of Figure 2.33 is provided in Figure 3.2.

Service Access PointInres

Real Test System Interface

Abstract Test System Interface

Medium service

Medium Service Access Point

IUT
Initiator

SUT
ss Point

TTCN−3 Test system MSAPISAP

ISAP MSAP

Lower Tester (PTC)
(Responder)

Upper Tester (MTC)
(Initiator user)

CPCP

Figure 3.2: Distributed Test Architecture for Inres
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1 module inresRTdistributed {
2 import from inresDefinitions all;
3 import from inresDistributed all;
4 modulepar {
5 integer transmissions:=100;
6 float maxExecutionTime:=2000.0;
7 SequenceNumber initialSequenceNumber:=one;
8 }

Figure 3.3: Inres TIMEDTTCN-3 Test Suite: Import and Module Parameter

The Implementation Under Test (IUT) is an Initiator implementation. The
Upper Tester (UT) function plays the role of an Initiator user and the Lower
Tester (LT) function plays the role of a Responder entity. The UT has a
direct connection with the IUT via port ISAP, whereas the LT only has indi-
rect access to the lower interface of the IUT via a Medium Service using port
MSAP. UT and LT coordinate themselves via the coordination points CP.
The provided example test case is based on the test suite which has been
presented in Section 2.5. Thus type, template, altstep, pre- and postamble
definitions are imported from that TTCN-3 modules as depicted in lines 2–3
of Figure 3.3. Likewise, the module parameters are specified in lines 4–8.
Moreover, it is assumed that the IUT has passed the related functional test
cases. Otherwise, it is not meaningful to perform the real-time test case de-
scribed in this chapter. The following real-time test case does, e.g., not care
about the functional requirement how often lost data packets are retrans-
mitted by the IUT, but does acknowledge any number of retransmissions.
Also, the LT does not inform the UT about successfully received data.
The test case is designed with the purpose to test the real-time properties
latency and mean inter-arrival time for the exchange of 100 data packets.
The principle control flow and message exchange is presented by the MSC
in Figure 3.4. The test case starts with a preamble that establishes a con-
nection between UT and LT. Afterwards, UT and LT synchronise in order
to ensure that both tester functions are in a correct state to execute the
test body. The test body includes the sending of 100 data packets from
UT to LT. The LT must always acknowledge the correct reception of each
data packet. Otherwise, the IUT will retransmit the data packet or, after
unsuccessful retransmissions, release the connection. However, this is not
shown in Figure 3.4. At the end of the test body, UT and LT synchronise
again and perform a postamble to release the connection.
This MSC depicts also the latency real-time requirement which is imposed
on sending IDATreq and receiving MDATind. It has to be within the open
interval (1ms, 5ms). Furthermore, a constraint has been put on the test
system itself in order to prevent a queueing of messages at the SUT: The
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ISAP

UT

SUT

Initiator

MSAP

LT

ConnectionEstablishment

Synchronisation

[10ms]+10ms

(1ms,5ms)

IDATreq(data)

MDATind
(DT,no,data) 10ms<mean

inter-arrival
time<15ms

MDATreq(AK,no)

loop <100>

Synchronisation

ConnectionRelease

msc InresRTexample

Figure 3.4: MSC for the Inres Test Case Example

IDATreq stimuli shall be sent periodically every 10ms. Moreover, this allows
a reasonable testing of inter-arrival times. Since mean inter-arrival time is
a soft real-time property, it cannot be expressed using MSC and is hence
just indicated by an MSC comment attached to the MDATind reception.
Nevertheless, TIMEDTTCN-3 allows to test that the mean time between
consecutive arrivals of message MDATind is within 10ms and 15ms.
The TIMEDTTCN-3 code for the behaviour of the Main Test Component
(MTC) is shown in Figure 3.5. In the example, the MTC is the UT, i.e. it
plays the role of an Initiator user. Lines 9 and 10 provide the interface of
the test case, i.e. test case name, formal parameters, component types for
the MTC (runs on clause), and Abstract Test System Interface (system
clause). Lines 11–14 describe variable declarations, a default activation, and
the mapping of MTC ports onto ports of the Abstract Test System Interface.
The creation of the LT component, the mapping of LT ports onto ports of
the Abstract Test System Interface, the connection of LT and MTC ports,
and the start of the LT component are specified in lines 15–18. The pream-
ble initiatorPreamble is called in Line 19 and a timer T is started (Line 20)
just to take care that the test case eventually terminates in case of a blocked
component. The initial synchronisation by means of an UT-initiated hand-
shake with boolean synchronisation messages is shown in lines 21 and 22.
The time for sending the first data packet is determined in Line 23.
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9 testcase inresRTexample(integer iterations)
10 runs on InitiatorUserType system InresSystemType {
11 var float sendTime:=0.0;
12 var default failOrInconcDefault:=activate(initiatorFailOrInconc());
13 var ResponderType responder:=null;
14 map(self:ISAP, system:ISAP);
15 responder:=ResponderType.create(self.timezone); // Create in same timezone
16 map(responder:MSAP, system:MSAP);
17 connect(self:CP, responder:CP);
18 responder.start(responderBehaviour(iterations));
19 initiatorUserPreamble();
20 T.start(maxExecutionTime); // Detect blocking of test case
21 CP.send(boolean:true);
22 CP.receive(boolean:true);
23 sendTime:=self.now+5.0; // Send for the first time in 5.0s from now
24 for(var integer i:=1; i<=iterations; i:=i+1) {
25 resume(sendTime); // Wait until ’sendTime’
26 log(TimestampType:{self.now, self.timezone, idatreq}); // Log timestamp
27 ISAP.send(IDATreq:{self.now}); // Piggyback send time
28 sendTime:=sendTime+0.01; // Send periodically every 10ms
29 }
30 CP.send(boolean:true);
31 CP.receive(boolean:true);
32 T.stop;
33 all component.done;
34 setverdict(pass);
35 initiatorUserPostamble ();
36 deactivate(failOrInconcDefault);
37 }

Figure 3.5: Inres TIMEDTTCN-3 Test Suite: Test Case Description

The body of the test case consists of the for loop specified in lines 24–29.
The loop body is repeated iteration times and specifies that a data packet is
sent every 0.01s, i.e. 10ms (lines 25–28).
After that, the test case continues with the final synchronisation (lines 30
and 31) and stopping of Timer T (Line 32). Then, the MTC waits for the
Responder component to terminate (Line 33) and sets the pass verdict in
Line 34. Finally, the postamble initiatorPostamble is called (Line 35) and the
default is deactivated.
The LT plays the role of a Responder entity. Its behaviour is specified
by the TIMEDTTCN-3 function shown in Figure 3.6. The function can be
structured into three parts and is very similar to the structure of the MTC
test case (Figure 3.5). The first part consists of declarations (lines 39–41 of
Figure 3.6), a default activation (Line 42), the call of the preamble respon-
derPreamble (Line 43), and the initial synchronisation (lines 44 and 45).
The second part is the test body which consists of a for loop (lines 46–65).
The loop body is repeated iterations times and includes an alt statement with
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38 function responderBehaviour(integer iterations) runs on ResponderType {
39 var SequenceNumber expectedSequenceNumber:=initialSequenceNumber;
40 var float receiveTime:=0.0, sendTime:=0.0;
41 var MDATind receivedPDU;
42 var default failDefault:=activate(responderFail());
43 responderPreamble();
44 CP.receive(boolean:true);
45 CP.send(boolean:true);
46 for (var integer i:=1; i<=iterations; i:=i+1) {
47 alt {
48 [ ] MSAP.receive(DataTransfer(?, expectedSequenceNumber))
49 −> value receivedPDU {
50 receiveTime:=self.now; // Get current time. Next, log time stamp:
51 log(TimestampType:{receiveTime, self.timezone, mdatind});
52 sendTime:=receivedPDU.mData.iData; // Extract send time
53 // Call latency online evaluation:
54 if (evalLatencyOnline(sendTime, receiveTime, 0.001, 0.005)==conf) {
55 setverdict(conf); // Real−time requirement violated
56 }
57 MSAP.send(DataAcknowledgement(expectedSequenceNumber));
58 expectedSequenceNumber:=toggle(expectedSequenceNumber);
59 }
60 [ ] MSAP.receive(DataTransfer(?,?)) −> value receivedPDU {
61 MSAP.send(DataAcknowledgement(receivedPDU.mData.seqNo));
62 repeat;
63 }
64 }
65 }
66 CP.receive(boolean:true);
67 CP.send(boolean:true);
68 setverdict(pass);
69 responderPostamble();
70 deactivate(failDefault);
71 }

Figure 3.6: Inres TIMEDTTCN-3 Test Suite: Responder Behaviour

two alternatives. The first alternative (lines 48–59) describes the expected
message exchange: A correct data packet is received (lines 48 and 49), the
current time is retrieved and recorded in the test log (lines 50 and 51),
the send time is extracted from the received message (Line 52). Then, the
latency is evaluated (line 54): if the latency requirement is violated, the new
test verdict conf (Section 3.3) is set (Line 55). Finally, the data packet is
acknowledged (Line 57) and the sequence number of the next correct data
packet is computed (Line 58). The second alternative describes the case
when the previous acknowledgement got lost and, therefore, the previous
data packet is retransmitted by the IUT. The reception of the retransmitted
data packet is described in Line 60 and its re-acknowledgement is specified
in Line 61. The repeat statement in Line 62 causes the re-evaluation of the
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entire alt statement, i.e. the test component waits for the reception of the
next correct data packet or another retransmission.
The third part of function responderBehavior describes the final synchroni-
sation (lines 66 and 67), the setting of the pass verdict (Line 68), and the
call of responderPostamble (Line 69). Finally, the default is deactivated in
Line 70 and the component terminates.
The test case specifies the expected message exchange only. Erroneous and
unexpected responses received from the SUT are considered to be handled
by defaults which are activated in Line 12 in Figure 3.5 and Line 42 in
Figure 3.6. The behaviour of the default is provided by imported altsteps
which were defined in Section 2.5.3.
The TIMEDTTCN-3 code in Figure 3.5 and Figure 3.6 includes the real-
time extensions self.now, resume, self.timezone, the new verdict conf, a
modified syntax for the log statement, and a new parameter for the create
operation. These extensions are explained in the following sections.

3.3 Non-Functional Verdicts

In standard TTCN-3, the verdicts indicate basically whether a test case
was successful (pass), inconclusive (inconc), or erroneous (fail) with re-
spect to functional requirements. By introducing the possibility to test non-
functional requirements, additional information concerning the test outcome
is needed: A test case may pass with respect to both functional and non-
functional behaviour, or it may pass only with respect to the functional
behaviour while the non-functional requirements are violated.1

Since non-functional behaviour can be observed only in combination with
functional behaviour on which the non-functional requirements are imposed,
it is not meaningful to make any statements on non-functional test results if
the functional behaviour is not conforming to the functional requirements.
Even in case of a functional inconclusive, no statement can be made on
non-functional test results, since an inconclusive case may have other non-
functional requirements than the pass case which is subject of testing. Hence,
distinctive verdicts are just needed in case of a functional pass. In contrast to
the functional verdicts, a non-functional inconclusive verdict is not needed,
since a non-functional requirement is either fulfilled or not.
Besides the existing pass verdict which is in TIMEDTTCN-3 used to indicate
a functional pass with an associated non-functional pass, TIMEDTTCN-3 in-
troduces the new verdict conf (as abbreviation for conforming) to indicate
a functional pass with an associated non-functional fail. Due to the intro-
duction of the new verdict, the existing overwriting rules for verdicts are

1In the following, the terms functional pass, non-functional pass, etc. are used to de-
scribe the test outcome with respect to functional and non-functional behaviour.
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Current value New verdict assignment value
of verdict none pass conf inconc fail
none none pass conf inconc fail
pass pass pass conf inconc fail
conf conf conf conf inconc fail
inconc inconc inconc inconc inconc fail
fail fail fail fail fail fail

Table 3.1: TIMEDTTCN-3 Overwriting Rules for the Test Verdicts

refined as given in Table 3.1.2 The new verdict conf is inserted between the
verdicts pass and inconc. This makes the usage of the verdicts downwardly
compatible: existing, pure functional test suites or re-used altsteps which
set the pass verdict do not change the non-functional result.
An example for the usage of the new conf verdict can be found in Fig-
ure 3.6: If the latency requirement is violated (checked by the if statement
in Line 54), conf is assigned to the local verdict of the Responder test
component (Line 55). Due to the overwriting rules of TIMEDTTCN-3, a
conf verdict will not be overwritten by the setverdict(pass) statement at
the end in Line 68. The existing verdict fail is still available to express a
functional fail (cf. Figure 3.11, lines 109 and 121).
In accordance to TTCN-3, each test component maintains its own local ver-
dict. The local verdicts contribute to the global verdict which is calculated
from the local ones based on the overwriting rules shown in Table 3.1.

3.4 Time Concepts

As discussed in Section 3.1, TTCN-3 supports just timers for handling time,
which are clumsy and influenced by the snapshot semantics. Furthermore,
TTCN-3 has no concept of absolute time, i.e. a test component cannot read
and use its local system time. In real-time testing, absolute time is necessary
to check relationships between observed test events and to coordinate test
activities. In case of synchronised clocks in a distributed test environment,
the system time may be exchanged among test components to check real-
time requirements that cannot be measured locally. Moreover, absolute
system time may then be used for the timely coordination of test activities.
As a consequence of these considerations, TIMEDTTCN-3 has the concept
of absolute time in order to support real-time testing. In case of a dis-
tributed test environment, the test cases may define requirements for the
synchronisation of clocks of different test components.

2In the special case of a tester malfunction which may, e.g., lead to a wrong real-time
measurement, the error verdict will be set by the test system.
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3.4.1 Absolute Time

Absolute time is related to clocks that provide the actual value of time.
TIMEDTTCN-3 assumes that each test component has access to such a clock,
but makes no assumptions about the number and the synchronisation of
these clocks.3 Furthermore, TIMEDTTCN-3 assumes that the resolution
of such clocks and the speed of the tester are adequate for the real-time
requirements which are subject of testing.
For the handling of time values either a new type is needed, or the time
values have to be mapped onto an existing basic type. Due to numerous
possible time representations, e.g. the Unix approach to count the seconds
since 1.1.1970 [IEE96] or a structured type with fields for year, month,
day, hour, etc., a common new type for time values is not easy to define.
Furthermore, a time type should support arithmetics and comparisons to
evaluate time stamps.
For simplicity, TIMEDTTCN-3 uses the existing float type and follows the
Unix approach, i.e. time is counted in seconds and the absolute time is
represented by the number of seconds since a fixed point in time. In contrast
to the Unix scheme, TIMEDTTCN-3 does not define a fixed starting point
for the time measurement. But for performing measurements of time during
the test run, the point in time at which a test run starts should at least
be included in the domain of valid time points. For that, TIMEDTTCN-3
supports the usage of absolute time by the operations now and resume:

now is used for the retrieval of the current local time. The local character of
the now operation is reflected by its application to the self handle, i.e.
self.now is the expected call statement for the now operation. The
operation now returns a float value that equals the current absolute
time when the operation is called. The mapping of the float value onto
a concrete daytime (i.e. year, month, day, hour, etc.) is considered to
be outside the scope of TIMEDTTCN-3 and has to be provided by the
test equipment, e.g. in form of additional conversion functions.

resume provides the ability to delay the execution of a test component.
The argument of the resume operation is considered to be an absolute
time value, i.e. the point in time when the test component shall resume
its execution. If required, a relative time can easily be specified by
using the current time as reference time, e.g., waiting for 3 seconds
can be described by resume(self.now + 3.0). A resume operation
has no effect if the specified time has already been passed before the

3From a conceptional point of view, synchronised test components share the same clock,
even though in a real implementation, the clocks of distributed test components have to be
synchronised by using a synchronisation protocol [Lam78, Lam90, RSB90, IET92] or by
radio controlled clocks as, e.g., provided by the Global Positioning System (GPS) [LAK99].
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operation is executed. Though, this case might be mentioned in the
test log, because it is an indication that the test system is too slow.

An example for the usage of the absolute time extension self.now is shown
in Figure 3.5. The current time is retrieved in Line 23. It is used to calculate
the sending time of the first data packet. The sending time is used by the
resume operation in Line 25: The test component will resume when the
specified time is reached.

3.4.2 Synchronisation of Clocks

Time values are observed and used locally by the test components. Further-
more, time values that are observed at different test components may be ex-
changed and used for further computations and comparisons. But this only
makes sense if the clocks of the involved test components are synchronised.
The synchronisation mechanism itself is outside the scope of TIMEDTTCN-3
and should be guaranteed by the test equipment, but requirements for clock
synchronisation may very well be expressed in TIMEDTTCN-3. These re-
quirements may be used by a TIMEDTTCN-3 runtime system to distribute
test components in a manner that they either share clocks physically or clock
synchronisation procedures for the test devices are applied.

Timezones
Most specification and implementation languages either support local time
or global time. Local time means that each behavioural entity, e.g., a Specifi-
cation and Description Language (SDL) process [ITU99a] or a TTCN-3 test
component, has its own local time. Global time means that all behavioural
entities share the same global time. Global time is perfect for the purpose of
real-time testing, because all test components have by definition the same
global time and are synchronised.
However, neither local nor global time are realistic assumptions for real-time
testing situations. A real-time test environment typically consists of several
devices. If synchronisation among two or more test components is required
to reach the goal of a test case, the components have to be executed either
on the same device or on synchronised devices.
The developer of a real-time test specification should not care about synchro-
nisation procedures and the distribution of test components her- or himself,
but she or he can support later implementation by identifying test com-
ponents which have to be synchronised. For this purpose, TIMEDTTCN-3
supports the timezones concept.
A timezone is an optional attribute that can be assigned to a test com-
ponent when the component is created. Test components with the same
timezone attribute are considered to be clock-synchronised, i.e. they have
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the same absolute time. A test component can only have one timezone at-
tribute. Components without timezone attributes are considered to be not
synchronised with any other component.
The timezones concept is implemented in the TIMEDTTCN-3 language by a
designated enumeration type with the reserved name timezones. The user
has to specify the timezone attribute values by defining the timezones type
in the module definitions part of a TIMEDTTCN-3 module. This type has
an implicit member of name none which indicates no clock synchronisation.
The usage of an enumeration type only makes sense if the number of time-
zones is finite and known. For specifying real world test scenarios, this is a
realistic assumption.
In TIMEDTTCN-3, the timezone attribute is an optional parameter of the
execute statement and the create operation. The timezone attribute of
an MTC is assigned when using the execute statement. Attributes of all
other test components are assigned by means of the create operation.
The flexibility of the timezones concept can be improved by making the time-
zones visible to the test components. This is implemented in TIMEDTTCN-3
by means of a special timezone function which returns the timezone of the
component that called the function. In the case of a non-synchronised test
component, the value none is returned. Like the now operation, the time-
zone operation is always applied to the self handle of a test component,
i.e. self.timezone is the expected manifestation of the timezone opera-
tion. The timezone information may be exchanged among test components
to check if synchronisation conditions are satisfied, or it may be used to
create several synchronised components.
The usage of the timezone concept is shown in figures 3.5, 3.7, and 3.10. Fig-
ure 3.7 presents the definition of timezones Goettingen, Luebeck, and Berlin.
In the test case example, the MTC is created by the execute statement in
Line 127 of Figure 3.10 and is assigned the timezone attribute Goettingen.
The behaviour of the MTC is shown in Figure 3.5: The MTC creates the test
component responder (Line 15 of Figure 3.5) and assigns its own timezone
which is obtained using self.timezone to the new component, i.e. MTC
and responder are considered to be synchronised. A TIMEDTTCN-3 run-
time environment may use this information to ensure this synchronisation
condition.

72 type enumerated timezones {
73 Goettingen, Luebeck, Berlin
74 }

Figure 3.7: Definition of Timezones
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3.5 Evaluation of Real-Time Properties

While functional behaviour is basically tested by using sequences of send
and receive operations, real-time requirements can be tested by relating
particular points in time to each other. The essence of the various real-
time requirements can be broken down to the relationship of points in time
[Koy91]. Mathematical formulae can be used to evaluate whether the points
in time of interesting events fulfil a certain real-time requirement or not.
To obtain those points in time, (existing) functional TTCN-3 test cases are
instrumented by statements which generate time stamps according to the
test purpose. TIMEDTTCN-3 implements this approach by making use of
the possibility to read absolute time values (Section 3.4) which serve as time
stamps. The mathematical formulae which are applied on the collected time
stamps can be coded as ordinary TTCN-3 functions. Those evaluation func-
tions return a judgement which indicates whether a real-time requirement
is fulfilled or not. Online or offline evaluation of time stamps is possible:

Online evaluation is needed if it is not possible to separate functional and
non-functional requirements, i.e. a non-functional property directly
influences the behaviour of a test case. In such a case, evaluation of
non-functional observations must be performed during the test run in
order to react on the result of the evaluation. Online evaluation has
the drawback of cluttering the test case and possibly slowing down the
performance of the test case which may be undesirable for time-critical
test cases.

Offline evaluation may be used if the non-functional requirements which
are subject of testing have no influence on the reaction of a test case.
In this case, the test case just needs to be instrumented by statements
that log the relevant time stamps. The non-functional requirement
itself can be specified separately. Based on the time stamps in the
log file, the non-functional properties can be evaluated when the test
run has finished. Offline evaluation has the advantage of having a
low impact on the performance of a test case, since only time stamps
have to be logged during the test run. Moreover, it does not clutter up
the functional test case with code needed for specifying non-functional
requirements.

3.5.1 Online Evaluation

For performing online evaluation, the relevant time stamps have to be eval-
uated during the test run, e.g. by calling a special evaluation function with
time stamps as actual parameters.



60 3. TIMEDTTCN-3

75 function evalLatencyOnline(float timeA, float timeB,
76 float lowerbound, float upperbound) return verdicttype {
77 var float latency:=timeB−timeA;
78 if (( latency<upperbound) and (lowerbound<latency)) {
79 return pass; // Non−functional pass
80 }
81 else {
82 return conf; // Non−functional fail
83 }
84 }

Figure 3.8: TIMEDTTCN-3 Online Evaluation Function

In a distributed test architecture, non-functional requirements may involve
time stamps which have been collected by different test components. In
this case, the evaluating component needs to obtain time stamps from other
components. To achieve this, time stamps can either be piggybacked4 in
the payload of some SUT signals or be communicated directly among test
components by using coordination messages. For implementing online eval-
uation, the new concepts of TIMEDTTCN-3 which have been introduced so
far, are sufficient.
In the test case example (Section 3.2), online evaluation is used to check
the fulfilment of a latency requirement (Line 54 in Figure 3.6). In case of
a violation, the local test verdict of the Responder test component is set to
conf (Line 55).
The online evaluation of the latency requirement involves time stamps of
several test components. Hence, the remote time stamps have to be trans-
ferred to the evaluating component. Since in the example, the additional
connection between ports CP is solely used for functional coordination of the
components, a piggyback approach is used: The evaluation function is called
inside the Responder test component (Line 54 in Figure 3.6). The receive
operation for the MDATind signal is local to this component (Line 48). Thus,
the related time stamp can be easily obtained locally by calling self.now
and storing it in variable receiveTime (Line 50). The corresponding send
operation is performed by the MTC and the associated time stamp is hence
piggybacked to the payload of the IDATind signal (Line 27 in Figure 3.5).5

The Responder test component extracts the piggybacked time stamp from
the received signal and assigns it to variable sendTime (Line 52 in Figure 3.6).
Afterwards, the online evaluation function evalLatencyOnline (Line 54) is
called. The actual parameters of this evaluation function call are the send

4Piggybacking is only possible if the payload is not changed by the SUT. This property
has to be tested previously by means of functional testing.

5In the Inres example, the payload of the IDATind signal is of type float. In the more
general case, the float value has to be encoded into the particular payload type.
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and receive time as well as the boundaries 1ms and 5ms which describe the
incarnation of the latency real-time requirement.
The evaluation function evalLatencyOnline (Figure 3.8) checks the mathe-
matical formula related to latency: lowerbound < treceive − tsend < upper-
bound (Line 78). Depending on the result, the function returns either a
pass or a conf verdict (lines 79 and 82) which may be used by the calling
entity for further decisions.

3.5.2 Offline Evaluation

When using offline evaluation, the evaluation function is called after test
execution. TIMEDTTCN-3 offers a means to record time stamps in a log
file during a test run in order to evaluate them afterwards. In this case,
the final test verdict is a composition of the functional test verdict which
has been determined during test run and of the result of the subsequent
offline evaluation. To facilitate offline evaluation of real-time requirements,
TIMEDTTCN-3 refines the existing log file concept of TTCN-3.
TTCN-3 assumes that one global or several local log files exist and provides
a log statement to enable logging of comments. [ETS02a] does not specify
the number of log files, the logging mechanism is not described, and neither
module control nor test components can access the global or local log files.
However, for an efficient offline evaluation, module control and test compo-
nents need access to the log files and the content and structure of the log
files has to be specified more formally.

The Log File Concept
A TIMEDTTCN-3 log file is basically a list of values of arbitrary TTCN-3
types. A log file is of type logfile and it is possible to handle log file
references as variables or to pass them as parameters into functions.
Each TIMEDTTCN-3 test component has its own local log file. A local log
file is initialised when the owning component is created. When test execu-
tion finishes, i.e. the MTC terminates, the local log files are automatically
merged into a global one. TIMEDTTCN-3 does not specify the internal mech-
anisms that are needed for storing and maintaining log files6, but defines four
functions for accessing the entries of a log file (Table 3.2).

Logging of Events
TIMEDTTCN-3 refines the TTCN-3 log statement in order to write infor-
mation into log files. But while in TTCN-3, the argument type of the log
statement is a fixed string, in TIMEDTTCN-3, the argument can be the value

6The mechanisms for storing and maintaining log files are considered to be implemen-
tation specific and therefore outside the scope of TIMEDTTCN-3.
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Operation name Return type Function
first(sortkey, template) boolean Select and sort log file by sortkey and

move to first matching entry in the
log file

next(template) boolean Move to the next matching entry
previous(template) boolean Move to the previous matching entry
retrieve type of sortkey

used as param-
eter of first

Retrieve entry from current log file
position

Table 3.2: Overview of TIMEDTTCN-3 Log File Operations

of any arbitrary valid type. For offline evaluation, usually a structured data
type containing a time stamp field is appropriate. A corresponding offline
evaluation function will only consider log file entries of that special type in
order to judge the fulfilment of the real-time requirement.

Log File Operations
For retrieving entries of a log file, TIMEDTTCN-3 offers means for sorting a
log file by a certain field of the log file’s entries. Since a log file may contain
values of arbitrary types, sorting and retrieving is only possible for a certain
type which has to be specified. According to the order which is imposed by
sorting, the first, the next or the previous log file entry may be retrieved.
For this purpose, TIMEDTTCN-3 uses an internal cursor which points to an
entry in the log file. This cursor can be moved and the value at the current
cursor position may be retrieved.
The operation first serves two purposes: It selects the entries of the log
file by their type and sorts them. In addition, it moves the cursor to the
first matching entry in the log file. The first parameter of first specifies the
element which is used as a sorting key.7 This is done using the TTCN-3
template notation: A “?” indicates the field which is used as sorting key, all
other fields must be set to “-”. The type of the template is used to restrict
the type of entries which are considered by the log file operations presented
in Table 3.2. The second parameter can be used to search for a certain value
among the entries, i.e. the internal cursor is moved to the first entry that
matches the second parameter. The same matching mechanisms which are
available for TTCN-3 receive statements apply.
The operations next and previous place the internal cursor to the next
matching entry before or after the current cursor position. The order to
which next and previous relate to is imposed by the sorting which re-
sulted from the first parameter of the operation first. The parameter of
next and previous is used in the same way as the second parameter of
first. More complex search operations may be build from these basic search

7For the correspondig type, relational operators, like < or ==, must be defined.
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Operation name Return type Description
getlog logfile Get log file
getverdict verdicttype Get global verdict
setverdict(verdict) – Set global verdict

Table 3.3: Overview of TIMEDTTCN-3 Operations for Test Run Handles

operations. The three operations first, next, and previous return true
when the matching entry is found in the log file, otherwise false. The value
of the last matched entry, i.e. the value at the current cursor position, can
be retrieved by the retrieve operation. (The return value is undefined if
first, next, or respectively previous returned false.) Since the operation
first restricts the type of the entries, retrieve returns values of the same
type which was specified by the first parameter of first.

The Test Run Handle
For the handling of global log files, TIMEDTTCN-3 introduces the concept
of a test run handle and thus changes the return type of the execute state-
ment: A test run handle is basically a reference of type testrun which is
returned by the execute statement and which gives access to the results of
a test run, i.e. the test verdict and global test log.
The operations which can be applied on a test run handle are shown in
Table 3.3. The getlog operation is used to retrieve the log file of a test
run. The operations getverdict and setverdict are used to retrieve and
set the global verdict after a test run. The overwriting of the final test
run verdict might be necessary if an offline evaluation shows that a non-
functional requirement is not fulfilled. For the setverdict operation the
same overwriting rules as defined in Section 3.3 apply.

Local Handling of Log Files
TIMEDTTCN-3 allows also to apply the getlog function to self handles,
i.e. a test component may access its own log file in order to perform a local
offline evaluation after the collection of time stamps.

The smooth interworking of all TIMEDTTCN-3 concepts for offline evalua-
tion shall be explained by means of the test case example in Section 3.2. For
logging test events, the data types shown in Figure 3.9 have been defined:
values of type TimestampType will be logged. Its field values describe the
log time (Line 86), the timezone of the logging component (Line 87). and
the type of the message which causes the log event (Line 88). The message
type is described by an ordinary enumeration type Messages (lines 91–93).
Local log file entries are written by the MTC before sending an IDATreq
message (Line 26 in Figure 3.5) and by the Responder test component after
the reception of a correct MDATind message (Line 51 in Figure 3.6).
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85 type record TimestampType {
86 float logtime,
87 timezones componentzone,
88 Messages messagename
89 }
90
91 type enumerated Messages {
92 idatreq , mdatind
93 }

Figure 3.9: Data Types Used for Offline Evaluation in the Inres Example

123 control {
124 var testrun myTestrun; // Variable for testrun handling
125 var logfile myLog; // Variable for testlog handling
126 var verdicttype myVerdict; // Variable for global verdict
127 myTestrun:=execute(InresRTexample(transmissions), Goettingen);
128 myVerdict:=myTestrun.getverdict; // Retrieval of verdict
129 if (myVerdict==pass) {
130 myLog:=myTestrun.getlog; // Retrieval of testlog
131 myVerdict:=evalMeanInterArrivalTimeOffline(mdatind, Goettingen,
132 0.01, 0.015, transmissions , myLog); // Offline evaluation
133 myTestrun.setverdict(myVerdict); // Change of testrun verdict
134 }
135 }
136 } // End of module inresRTdistributed

Figure 3.10: TIMEDTTCN-3 Control Part for the Offline Evaluation

Figure 3.10 shows the TIMEDTTCN-3 module control part of the Inres ex-
ample real-time test suite. The control part starts with variable declarations
for the handling of a test run, a log file, and a verdict value (lines 124–126).
The test case inresRTexample is executed with Goettingen as timezone at-
tribute for the MTC (Line 127). The execute statement returns a test run
handle which is assigned to variable myTestrun. The verdict is retrieved
from the test run and stored in variable myVerdict (Line 128).
If myVerdict is pass (checked in Line 129), the log file is retrieved (Line 130)
and the offline evaluation function evalMeanInterArrivalTimeOffline is called
(lines 131 and 132). The actual parameters for the evaluation function are
the message identifier mdatind, for which the mean inter-arrival time should
be checked, the timezone value Goettingen for the identification of relevant
log file entries, the time bounds of 10ms and 15ms that determine the bounds
of the requirement to be checked, the module parameter for the number of
transmissions that specifies the number of relevant time stamps to examine,
and the reference to the log file to be evaluated. At the end, the result of the
offline evaluation is assigned to the final verdict of the test run (Line 133).
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94 function evalMeanInterArrivalTimeOffline(Messages messageId, timezones zone,
95 float lowerbound, float upperbound, integer count, logfile timelog)
96 return verdicttype {
97 var float timeSum:=0.0, averageArrivalTime;
98 var TimestampType stampA, stampB;
99 if (timelog. first (TimestampType:{?,−,−},

100 TimestampType:{?, zone, messageId})==true) { // Search
101 stampA:=timelog.retrieve; // Get current time stamp entry
102 for (var integer i:=2; i<=count; i:=i+1) {
103 if (timelog.next(TimestampType:{?, zone, messageId})==true) { // Search
104 stampB:=timelog.retrieve; // Get current time stamp entry
105 timeSum:=(stampB.logtime−stampA.logtime)+timeSum;
106 stampA := stampB;
107 }
108 else {
109 return fail; // Wrong number of messages indicates functional problem
110 }
111 }
112 averageArrivalTime:=timeSum/(int2float(count−1));
113 if ((averageArrivalTime<upperbound)
114 and (lowerbound<averageArrivalTime)) {
115 return pass; // Non−functional pass
116 }
117 else {
118 return conf; // Non−functional fail
119 }
120 }
121 return fail; // Wrong number of messages indicates functional problem
122 }

Figure 3.11: TIMEDTTCN-3 Offline Evaluation Function

The offline evaluation function evalMeanInterArrivalTimeOffline is shown in
Figure 3.11. It implements the mathematical formula for mean inter-arrival
time based on the collected time stamps ti, namely [

∑n
i:=2(ti − ti−1)] /(n−1)

and subsequently verifies that the mean inter-arrival time falls within the
interval (lowerbound, upperbound).
In order to iterate through the time stamps of mdatind messages, the oper-
ations first (lines 99 and 100 in Figure 3.11) and next (Line 103) are used.
Since the first operation in lines 99 and 100 sorts the log file by the logtime
field, the time stamp entries are matched in ascending order. If first or
next fails, the log file contains less matching time stamps than expected.
This is an indication for a non-conforming behaviour of the SUT. Hence,
evaluation is aborted with a fail verdict (lines 109 and 121).
The retrieve operation (lines 101 and 104) yields the value of the last
successfully matched entry, which is used to calculate the mean inter-arrival
time. Based on the final value of the calculation, the function returns either
pass or conf (lines 115 and 118).
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3.5.3 Equivalence of On- and Offline Evaluation

The presented mechanisms for on- and offline evaluation of real-time proper-
ties are equivalent as long as it is possible to re-identify time stamps stored in
a log file. This can be assured if distinguishable time stamps are generated,
e.g. by using message names as labels like in the example (cf. Figure 3.9).
In contrast to online evaluation, offline evaluation has the advantage to
separate functional and non-functional requirements. It is even possible to
use the time stamps contained in a log file for the assessment of several
different real-time requirements.

1 function evalLatencyOffline(Messages messageIdA, Messages messageIdB,
2 timezones zone, float lowerbound, float upperbound,
3 integer count, logfile timelog) return verdicttype {
4 var TimestampType stampA, stampB;
5 var float latency;
6 if (timelog. first (TimestampType:{?,−,−},
7 TimestampType:{?, zone, messageIdA})==true) { // Search message A
8 stampA:=timelog.retrieve; // Time stamp for message A, i.e. send
9 if (timelog.next(TimestampType:{?, zone, messageIdB})==true) {

10 stampB:=timelog.retrieve; // Time stmap for message B, i.e. receive
11 latency:=stampB.logtime−stampA.logtime;
12 if (not((latency<upperbound) and (lowerbound<latency))) {
13 return conf; // Non−functional fail
14 }
15 for (var integer i:=2; i<=count; i:=i+1) {
16 if (timelog.next(TimestampType:{?, zone, messageIdA})==true) {
17 stampA:=timelog.retrieve; // Time stamp for message A, i.e. send
18 if (timelog.next(TimestampType:{?, zone, messageIdB})==true) {
19 stampB:=timelog.retrieve; // Time stamp for message B, i.e. receive
20 latency:=stampB.logtime−stampA.logtime;
21 if (not((latency<upperbound) and (lowerbound<latency))) {
22 return conf; // Non−functional fail
23 }
24 }
25 else {
26 return fail; // Wrong number of messages: functional problem
27 }
28 }
29 else {
30 return fail; // Wrong number of messages: functional problem
31 }
32 } // End of for loop
33 return pass; // Non−functional pass
34 }
35 }
36 return fail; // Wrong number of messages: functional problem
37 }

Figure 3.12: TIMEDTTCN-3 Offline Evaluation Function for Latency
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In the Inres example, time stamps are logged for the send (Figure 3.5,
Line 26) and receive event (Figure 3.6, Line 51). Hence, it is possible to
evaluate the latency real-time requirement not only online as demonstrated
in the Inres test case example, but also offline. This is shown in Figure 3.12.
The structure of the latency offline evaluation function is quite similar to the
offline evaluation function for the mean inter-arrival time (Figure 3.11). In
lines 6–8 of Figure 3.12, the time stamp for the first send event is obtained.
Then the time stamp for the corresponding receive event8 is retrieved (lines
9 and 10). If the latency inequations do not hold for that pair of events, the
evaluation function terminates and the verdict conf is returned to indicate
a non-functional failure (lines 11–14). These steps are repeated for count
entries of the log file by the for loop in lines 15–32. If all entries are valid,
the pass verdict is returned (Line 33). In case of any problem, evaluation
terminates and the verdict fail is returned, because these problems result
from non-matching time stamps in the log file. For example, to allow the
comparison of a pair of time stamps, they must have the same timezone
attribute which is determined by the formal parameter zone.
Figure 3.12 demonstrated that it is possible to replace online evaluation by
offline evaluation. Now, it shall be demonstrated how evaluation of the mean
inter-arrival time requirement can be performed online.9

When trying to evaluate soft real-time requirements online, variables which
keep their values between subsequent function calls are needed. Such “static”
variables are not supported by TTCN-3. However, a simple workaround for
“static” variables is to declare such variables as component variables.
Figure 3.13 depicts in lines 1–7 the definition of a Responder component
type which contains additionally three variables (lines 4–6) which serve as
“static” variables. The usage of these variables is demonstrated by function
evalMeanInterArrivalTimeOnline in lines 9–29.
Variable count is used to count how often the online evaluation function
was called. If it is called for the first time, inter-arrival times cannot be
computed, since at least two arrivals are required for that. In this case, the
other variables are hence only initialised and the none verdict is returned
(lines 13–17 of Figure 3.13). For all subsequent calls, the inter-arrival time
for the last pair of events can be calculated (Line 19) as well as the mean
inter-arrival time for all past events (Line 21). The used mathematical for-
mula for calculating after the ith iteration the mean value mi on-the-fly
is: mi := mi−1·(i−1)+xi

i , where xi is the sample obtained in the ith itera-

8In fact, the function does not care what kind of events it evaluates as long as the
message name field of the time stamp matches the parameters messageIdA and messageIdB.

9It has to be considered that, e.g. during the ith iteration (i ∈ [2 . . . n]), the arithmetical
mean might be out of bounds. However, after the nth iteration, the situation might
have changed due to averaging. Thus, checking mean values after each iteration differs
semantically from checking a mean value only after the last iteration.
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1 type component ResponderTypeWithMemory {
2 port MediumSAP MSAP;
3 port CoordinationPoint CP;
4 var float previousArrivalTime;
5 var float mean;
6 var integer count:=0;
7 }
8
9 function evalMeanInterArrivalTimeOnline(float arrivalTime, float lowerbound,

10 float upperbound) runs on ResponderTypeWithMemory return verdicttype {
11 var float interArrivalTime;
12 count:=count+1;
13 if (count==1) { // For inter−arrival time, at least two arrivals are required
14 previousArrivalTime:=arrivalTime;
15 mean:=0.0;
16 return none;
17 }
18 else {
19 interArrivalTime:=arrivalTime−previousArrivalTime;
20 previousArrivalTime:=arrivalTime;
21 mean:=mean∗int2float(count−1)+interArrivalTime/int2float(count);
22 if ((mean<upperbound) and (lowerbound<mean)) {
23 return pass; // Non−functional pass
24 }
25 else {
26 return conf; // Non−functional fail
27 }
28 }
29 }

Figure 3.13: TIMEDTTCN-3 Mean Inter-arrival Time Online Evaluation

tion. Based on the calculated mean inter-arrival time, either a pass or conf
verdict is returned (lines 22–27).
The two above examples demonstrate that the given real-time requirements
may be evaluated using either on- or offline evaluation. Moreover, time
stamps from the same log file may be used to assess various real-time prop-
erties using offline evaluation functions. While for online evaluation, the
time stamps are explicitly passed as parameters to the evaluation function,
for offline evaluation, the time stamps have to be re-identified in the log file.
Therefore, the specification of offline evaluation functions usually requires
more lines of TIMEDTTCN-3 code than online evaluation.
The idea is to provide a module of predefined time stamp type defini-
tions and matching evaluation functions in order to facilitate the usage of
TIMEDTTCN-3. In this way, a real-time test case developer just needs to
select the appropriate evaluation function from the predefined library and
instrument the test case accordingly.
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3.6 Graphical Presentation of TIMEDTTCN-3

The Graphical Presentation Format for TTCN-3 (GFT) [ETS03a] is one of
the standardised presentation formats of TTCN-3. It provides an exact way
of graphically displaying TTCN-3 behaviour specifications, i.e. test cases,
altsteps, functions, and module control. GFT is based on the MSC lan-
guage [ITU99b]. It uses a subset of MSC and extends this subset with test
specific symbols and keywords. Appropriate GFT visualisations exist for all
behavioural TTCN-3 statements.
It is desirable to be able to present TIMEDTTCN-3 behaviour specifications
graphically as well. This is achieved by TIMEDGFT, a corresponding real-
time extension of GFT. TIMEDGFT has been published jointly in [DGN03].
In the following, just a brief introduction on TIMEDGFT and its relation to
TIMEDTTCN-3 is given. A more elaborated presentation is about to appear
in one of the co-authors’ PhD thesis [Dai05].
Since GFT already covers all behavioural statements of the TTCN-3 core
notation, only the real-time extensions of TIMEDTTCN-3 have to be consid-
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ered in order to define TIMEDGFT. This is achieved by introducing addi-
tional symbols and enriching existing GFT symbols. Table 3.4 provides an
overview on the graphical presentation of the TIMEDTTCN-3 extensions.
Figure 3.14 shows a TIMEDGFT representation of the TIMEDTTCN-3 test
case example from Figure 3.5, i.e. this TIMEDGFT diagram describes the
MTC behaviour. The majority of symbols contained in this diagram are
standard GFT symbols: Test components are displayed as MSC instances,
ports are depicted similarly to instances but with a dashed life line. Variable
declarations, mapping and connecting of ports are displayed as MSC action
boxes. For default activation and deactivation, creation and start of compo-
nents, variants of the action symbol are used. Function call is visualised as
MSC reference. Operations on ordinary TTCN-3 timers are mapped one-
to-one on MSC timer symbols. Communication operations are represented
as messages between the test component instance and its port instances.
Loops, but also other control flow related statements like, e.g. alternatives,
are mapped to variants of MSC inline expressions. Waiting for termination
of PTCs, but also setting of verdicts are visualised as MSC condition.
In the remainder, the additions which are contributed by TIMEDGFT to
GFT are presented. The description is structured according to the order of
appearance of the TIMEDTTCN-3 real-time concepts in Figure 3.14.

3.6.1 Timezones

TIMEDTTCN-3 allows to assign timezones to test components during their
creation. Both, GFT and TIMEDGFT depict the creation of test components
by the same create or respectively execute symbol. Thus, the assignment of
a timezone is just an additional parameter in a create or execute symbol.
A test component may retrieve its timezone attribute using the timezone
operation. TIMEDGFT provides no special symbol for the timezone op-
eration. Depending on the usage, the timezone operation may appear in
different symbols. For example, a timezone operation will appear in an
action box if it is used in an assignment, or a timezone operation will
be presented within a reference symbol if it defines the actual parameter
of an altstep or function call. The TIMEDGFT representation of both, a
TIMEDTTCN-3 create statement and a self.timezone operation, can be
found in the upper third of Figure 3.14 where the responder test component
is created.

3.6.2 Absolute Time

For the now operation, no special symbol is provided by TIMEDGFT. In-
stead, the now operation appears in different symbols depending on its
usage, e.g. as inscription in action boxes or log symbols. In Figure 3.14,
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mtc
InitiatorUserType

ISAP CP

var float sendTime:=0.0

var default
failOrInconcDefault:=
activate(initiatorFailOrInconc())

var ResponderType
responder:=null;
map(self:ISAP,system:ISAP)

responder:=
ResponderType.create

)(self.timezone

map(responder:MSAP,
system:MSAP);
connect(self:CP, responder:CP)

responder. start
(responderBehaviour(iterations))

initiatorUserPreamble()

T (maxExecutionTime) boolean
boolean

boolean
boolean

true
true

true
true

sendTime:= self.now+5.0

TimestampType:

@[sendTime]

self.now
self.timezone

,
,

idatreq}

{
IDATreq
self.now

sendTime:=sendTime+0.01

integerfor i:=1; i:=i+1)(

T

all component.done

pass

initiatorUserPostamble()

deactivate

testcase
InitiatorUserType InresSystemType
inresRTexample(integer iterations)

runs on system

(failOrInconcDefault))

i<=iterations;

Figure 3.14: TIMEDGFT Representation of Test Case from Figure 3.5

the self.now operation is used in an assignment, in a log inline template,
and as message template parameter. Therefore, it appears in an action box,
inside the log symbol, and as message parameter.
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For presenting the resume statement graphically, TIMEDGFT adopts the
absolute time constraint symbol of MSC. (In Figure 3.14, the visualisation
of resume(sendTime) can be found just inside the beginning of the for
loop.) But, contrary to MSC, the dashed time line is attached directly to
an instance, not to an event. The reason is that the resume statement is a
statement on its own and not related to other events.

3.6.3 Logging

In the GFT standard, log statements are presented in action boxes. Never-
theless, TIMEDGFT introduces a new log symbol which resembles a paper-
based log. The reason for this new symbol is that places in the test be-
haviour, where time and other information are collected in the log file, shall
be emphasised. Figure 3.14 presents below the resume symbol the new sym-
bol which logs a time stamp of type TimestampType using an inline template.

3.6.4 Test Run and Log File Handling

In the module control part10, TIMEDTTCN-3 grants access to the global test
verdict and the log file by a test run handle which is returned by the execute
statement. Like for the now operation, the context of the getlog operation
determines the symbol in which it is presented. If the getlog operation is,
e.g., used in an assignment, it will be presented inside an action box.
The TIMEDTTCN-3 functions first, next, previous, and retrieve have no
special TIMEDGFT presentation. Just like for the getlog operation, their
presentation depends rather on the context in which they are applied.

3.6.5 Verdict Handling

The handling of verdicts in TIMEDGFT is almost identical to their handling
in GFT. When setting a local verdict inside a test component, the argument
of the setverdict operation is presented in an MSC condition symbol.
However, the presentation of the setverdict operation differs from GFT
if the global verdict is set. This is used inside the module control part
when applying the setverdict operation to a test run handle. In this case,
TIMEDGFT displays not just the argument of the setverdict operation,
but the complete TIMEDTTCN-3 statement including the test run handle to
which the setverdict operation is applied. Otherwise, the relation between
verdict and test run handle would not be clear.
There exists no special symbol to emphasise the getverdict operation. The
context determines rather the symbol in which it is presented.

10For the graphical presentation of a module control part, GFT provides a control
diagram, which includes one control instance only.
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3.7 Tabular Presentation of TIMEDTTCN-3

In addition to GFT, the set of standardised presentation formats for TTCN-3
consists of the Tabular Presentation Format (TFT) [ETS02b]. It allows to
represent TTCN-3 as tables which resemble the Tree and Tabular Combined
Notation (TTCN) [ISO97b], the predecessor of TTCN-3. In contrast to
GFT, not only the behavioural elements of the TTCN-3 core notation can
be visualised using TFT, but in particular also data type and template def-
initions. No modifications of TFT are required for the tabular presentation
of TIMEDTTCN-3 test suites. This is discussed in the following paragraphs.

3.7.1 Behaviour

In TFT, the actual behaviour description of test cases, functions, altsteps,
and module control are presented textually as ordinary TTCN-3 core lan-
guage inside the behaviour area of the corresponding table. Just static
information like formal parameters, component type, and local variables def-
initions are displayed in special sections of the table. Hence, all behavioural
add-ons of TIMEDTTCN-3, like self.now, resume, first, retrieve, get-
log, are presented as textual core language. This includes also creation of
clock synchronised components, since this is just an additional parameter
of the create operation or respectively the execute statement, which are
both part of the behaviour description. Therefore, no extension of TFT’s
behavioural tables is necessary. Nevertheless, to get an impression of how
a behavioural TFT table looks like, Table 3.5 provides the tabular presen-
tation of the TIMEDTTCN-3 Inres example test case from Figure 3.5. All
additional statements of TIMEDTTCN-3 are contained as textual notation
inside the behavioural area in the lower half of the table.

3.7.2 Types and Values

In contrast to behaviour representation, type, template, and constant defini-
tions are presented by TFT more closely to the tabular appearance of TTCN
and thus, much more detached from the TTCN-3 core language. However,
since TIMEDTTCN-3 time stamps are ordinary data types, their definition
can be visualised using the standard tables for presenting data types in TFT.
This is also valid for the definition of the reserved enumeration type time-
zones. Furthermore, the template definitions which are used for matching
log file entries using first, next, and previous can be displayed as ordi-
nary TFT template tables, too. Thus, although TFT uses very specialised
tables for types and values, they need not to be modified for representing
TIMEDTTCN-3 definitions.
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Testcase

Name inresRTexample(integer iterations)

Group

Purpose

System Interface InresSystemType

MTC Type InitiatorUserType

Comments

Local Def Name Type Initial Value Comments

sendTime float 0.0

failOrInconcDefault default activate
(initiatorFailOrInconc())

responder ResponderType null

Behaviour

map(self :ISAP, system:ISAP);
responder:=ResponderType.create(self.timezone); // Create in same timezone
map(responder:MSAP, system:MSAP);
connect(self :CP, responder:CP);
responder.start(responderBehaviour(iterations));
initiatorUserPreamble();
T.start(maxExecutionTime); // Detect blocking of test case
CP.send(boolean:true);
CP.receive(boolean:true);
sendTime:=self.now+5.0; // Send for the first time in 5.0s from now
for(var integer i:=1; i<=iterations; i:=i+1) {

resume(sendTime); // Wait until ’sendTime’
log(TimestampType:self.now, self.timezone, idatreq); // Log timestamp
ISAP.send(IDATreq:self.now); // Piggyback send time
sendTime:=sendTime+0.01; // Send periodically every 10ms
}
CP.send(boolean:true);
CP.receive(boolean:true);
T.stop;
all component.done;
setverdict(pass);
initiatorUserPostamble();
deactivate(failOrInconcDefault);

Detailed Comments

Table 3.5: TFT Representation of Test Case from Figure 3.5

3.8 Summary

In this chapter, TIMEDTTCN-3, a real-time extension for TTCN-3 has been
introduced. Its usage was demonstrated by applying it to testing of real-
time properties which were imposed on the Inres protocol. By introducing
absolute time for test components, TIMEDTTCN-3 allows to wait until an
absolute point in time and to collect time stamps. Time stamps may be eval-
uated online during a test run or offline after a test run. Offline evaluation
allows to separate the description of functional and non-functional require-
ments which are subject of a test case. For offline evaluation, TIMEDTTCN-3
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offers a flexible log mechanism with local and global log files. In particular,
TIMEDTTCN-3 supports to store and retrieve time stamps in or respec-
tively from log files. The log mechanism also enables an evaluation of non-
functional properties which are not real-time related. For example, failure
rates for transmitted data packets can be checked offline by logging cor-
rect as well as erroneous message receptions without any time information.
TIMEDTTCN-3 can also be used for distributed test architectures, since it
supports the specification of synchronisation requirements for clusters of
clock-synchronised test components. This allows to compare time stamps
captured at different, but clock-synchronised test components.
Even though TIMEDTTCN-3 was developed with having hard real-time re-
quirements in mind, it can also be used to test soft real-time requirements
as long as they apply to a discrete set of events. An example was pro-
vided, which demonstrates the assessment of statistical properties like mean
inter-arrival times.
Furthermore, it is was shown how TIMEDTTCN-3 can be displayed using the
existing TTCN-3 presentation formats: TIMEDGFT has been introduced as
an extension of GFT which allows a graphical specification and presenta-
tion of real-time test cases. For the tabular presentation format (TFT), it
was demonstrated that no extension is necessary for the representation of
TIMEDTTCN-3 real-time test suites.
For supporting TIMEDTTCN-3, only a few changes to the TTCN-3 language
are needed. They have been documented and submitted to ETSI as change
requests for TTCN-3 and GFT [Neu02, Dai03]. TIMEDTTCN-3 is down-
wardly compatible to TTCN-3. Hence, existing test suites may be reused
and instrumented for generating time stamps. The only break of compat-
ibility is due to the modified return type of the execute statement. Thus,
the control part of an existing TTCN-3 module might require modifications,
which can be performed automatically by a tool, however.
The formal semantics of the new TIMEDTTCN-3 constructs was not pre-
sented. Indeed, most TIMEDTTCN-3 extensions can be explained by an
add-on to the existing formal semantics of TTCN-3. Only the concept of
absolute time in combination with the notion of clock-synchronised com-
ponents and the delaying of execution requires a new real-time semantics.
These features allow the description of time dependencies among test compo-
nents, i.e. absolute time values influence the behaviour in different test com-
ponents. For all other statements, the existing, untimed semantics [ETS03b]
remains valid.
TIMEDTTCN-3 is also intended to be used as real-time test implementation
language. Thus, a TIMEDTTCN-3 runtime system benefits from real-time
support by the TTCN-3 Runtime Interface (TRI) and TTCN-3 Control In-
terface (TCI). For example, the TRI Platform Adaptor might provide access
for reading the local clock of a test component. Since logging facilities and
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test component creation are provided by the TCI, the log file handling and
the timezone concept of TIMEDTTCN-3 may benefit from an enhanced TCI.
Currently, it is, e.g., under discussion to define an Extensible Markup Lan-
guage (XML) [W3C04] format for TTCN-3 log files, which would facilitate
an automated access to the log file content.
From the methodological aspect, it is suggested to provide a TIMEDTTCN-3
module of predefined time stamp type definitions and evaluation functions to
ease development of real-time tests. Further support for real-time test case
development, like computer aided real-time test case generation or creating
real-time test cases from patterns, is subject of the remaining chapters of
this thesis.

Related Work
Real-time extensions for TTCN as well as a formalised evaluation of log files
in general are not new. For example, [UHPB03] presents an approach for
a formalised analysis of log files: Log files of a distributed system are ob-
tained by monitoring and later-on transformed into a formal SDL [ITU99a]
representation which can be checked by a model checker. Unfortunately,
this approach involves several activities which cannot be specified and auto-
matically executed as part of a test case. Furthermore, it does not address
real-time properties but trustworthiness requirements.
For testing real-time requirements, two extensions for TTCN-2, the pre-
decessor of TTCN-3, have been proposed in the past: PerfTTCN and
RT-TTCN .
PerfTTCN [SSR97] extends TTCN-2 with concepts for performance test-
ing. These concepts are: (1) performance test scenarios for the description
of test configurations which include, e.g., load generator components for
fore- and background load, (2) traffic models for the description of discrete
and continuous streams of data, (3) measurement points as special obser-
vation points, (4) measurement declarations for the definition of metrics to
be observed at measurement points, (5) performance constraints to describe
the performance conditions that shall be met, and (6) performance verdicts
for the judgement of test results.
The PerfTTCN concepts are introduced mainly on a syntactical level by
means of new TTCN tables. Their semantics is described in an informal
manner only and in some cases the implementation of these concepts is not
clear. For example, traffic models may be declared inside a PerfTTCN test
suite but they turn out as comments for a PerfTTCN compiler because their
implementation is outside the scope of the language. The traffic models may
serve as input parameters for external load generator components and it can
be discussed, if such information should be part of the compilable test suite
or part of accompanying documents.
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[GKS00] describes how the concepts of PerfTTCN can be implemented with-
out any language extensions: For example, external load generators may be
controlled from within TTCN-2 by control messages which are passed to the
load generating device by an adaptor port. This approach can also be used
in TIMEDTTCN-3 to establish some background load to obtain a realistic
environment with definable, reproducible loads for the SUT. Alternatively,
[VGDS04] proposes an extension for TTCN-3 to call external command line
utilities from within a test case. This facility may be used to call a software-
based load generator. Finally, it is possible to implement explicitly a load
generator on a test component using TIMEDTTCN-3 statements.
The second real-time extension proposed for TTCN-2 is RT-TTCN [WG97,
WG99]. It is intended for testing hard real-time requirements. On the syn-
tactical level, RT-TTCN supports the annotation of TTCN-2 statements
with a time interval for earliest and latest execution times. On the seman-
tical level, the TTCN-2 snapshot semantics has been refined. In addition,
RT-TTCN has been mapped onto timed transition systems [HMP91].
Even though the RT-TTCN time extension is introduced formally and looks
very simple, it turned out that its usage is not that simple. The time
points associated to a statement are relative to the occurrence of previous
events and define a time interval in which the statement is activated, i.e.
can be executed. The handling of these activation intervals is not intuitive,
especially, if several statements can be executed, i.e. their activation intervals
overlap. For the user it seems to be more natural to record execution times
and to compare their values afterwards than to define activation intervals
for TTCN-2 statements.
Experiments give evidence that TIMEDTTCN-3 covers most of the PerfTTCN
and RT-TTCN features while being more intuitive in usage. Moreover, the
TIMEDTTCN-3 extensions are more unified than the other extensions by
making full use of the expressiveness of TTCN-3.





Chapter 4

Generation of
Real-Time Test Cases

Manual test development is a time consuming task. Furthermore, manual
activities are error-prone. In testing, this may lead to situations where it
has to be decided whether a fail verdict was assigned due to defects in
the Implementation Under Test (IUT) or due to errors made during test
development. Thus, test development benefits from tool support.
Figure 4.1 depicts the test process described in Section 2.1.1 and indicates
the different areas which may profit from tooling. If a formal specification for
the IUT exists, corresponding test purposes may be automatically derived
from the specification, e.g. based on some coverage criteria. For Specifica-
tion and Description Language (SDL) specifications [ITU99a], this approach
has been successfully applied [SEG+98, KJG99, Koc01, Sch03]. However,
SDL allows only to describe functional behaviour. A comparable, indus-
trial strength formal language for the specification of real-time behaviour
did not prevail, yet. The area of computer aided derivation of real-time
test purposes based on formal specifications is therefore not covered in this
thesis.
However, for the next activity, namely real-time test case development, a
popular formalism exists. Real-time test purposes can be formalised as Mes-
sage Sequence Charts (MSCs) and used as input for a tool. Thus, computer
aided generation of TIMEDTTCN-3 real-time test cases is possible. A suit-
able approach for this is presented in this chapter.
The remaining testing activities can as well be automated by tools. Making
an Abstract Test Suite executable can be performed by compilers [Dan04,
Tel04, Tes04, Ope04], and test execution can be supported by runtime sys-
tems which implement the TTCN-3 Runtime Interface (TRI) and TTCN-3
Control Interface (TCI). The formalised evaluation of test log files using
TIMEDTTCN-3 evaluation functions is described in the previous chapter.
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Implementation

Computer Aided
Test case Generation

Test purpose
definition

Test case
development

Test execution

Test evaluation

Specification

Test result

Test log

Test suite

Test purposes

Formalised Evaluation

Test Compiler
Test Runtime System

Computer Aided
Test purpose Specification

Figure 4.1: Possible Tool Support for Black-Box Testing Activities

This chapter is about generating TIMEDTTCN-3 real-time test cases from
formal MSC real-time test purposes. In Section 4.1, it is explained how
real-time test purposes can be specified by means of MSC. Then, in Sec-
tion 4.2, an interpretation of real-time test purpose MSCs and the automated
transformation into TIMEDTTCN-3 real-time test cases are presented. This
includes both, established concepts for deriving functional test cases and a
novel approach for obtaining real-time test cases. The next section discusses
real-time test generation from test purpose MSCs for distributed test archi-
tectures. Finally, a summary of this chapter is given in Section 4.4. This
chapter is based on the author’s work that has been published as part of
[DGN03, GNS+02].

4.1 MSC-based Test Purpose Specification

The usage of MSC [ITU99b] as a graphical language for test purpose spec-
ification, but also for test behaviour visualisation is popular and has been
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thoroughly investigated by several authors [GHN93, GW98, KJG99, BRS01,
BBJ+02, Koc01, Sch03, Ebn04]. However, these authors only treated the
usage of MSC for describing pure functional behaviour, but not for testing
real-time properties.

4.1.1 Test Purpose vs. Test Behaviour Visualisation

MSC-based real-time test purpose specification has to be distinguished from
visualising real-time test behaviour using MSC or TIMEDGFT respectively.
The difference between test purposes1 described in form of MSCs and a
test behaviour visualised by TIMEDGFT diagrams are the different levels of
abstraction and points of view. The relations between test purposes and the
behaviour of test cases are shown in Figure 4.2. TIMEDGFT is described
in Section 3.6, thus this chapter is only concerned with the left half of the
figure below.

generate
Test purpose Test behaviour

mapping
MSC GFTTimedTTCN−3Timed

Figure 4.2: MSC Test Purposes, Test Behaviour and TIMEDGFT Diagrams

An MSC test purpose is an abstract description of a test. It describes
the test from the perspective of the System Under Test (SUT) and makes
no assumptions about the implementation of the test, e.g. the used test
architecture. Only after providing additional information about the test
architecture, it is possible to generate TIMEDTTCN-3 test behaviours from
MSC test purpose specifications. In contrast, test behaviour descriptions
define tests from the perspective of the test system. They are written for a
specific test architecture and include all the activities to coordinate the test
components and evaluate the test result.
While test behaviour visualisation requires extension of MSC like those pro-
vided by GFT, MSC is very well suited for the formal specification of
test purposes. Industrial tools exist which allow an automated genera-
tion of TTCN-2 test cases from MSC test purposes [GKSH99, BBJ+02].
These experiences from functional testing serve as a foundation for the
TIMEDTTCN-3 real-time test case generation approach presented in this
chapter.

1In the following, the terms test purpose and test case are used to denote also real-time
test purposes and real-time test cases. However, to emphasise the real-time aspect, the
latter terms are still used in some places of this chapter.
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4.1.2 An Inres-based Example

In the approach presented in this chapter, the common practise to specify
test purposes by system level MSCs is used. A system level MSC does not
show internals of an SUT, but has just one designated instance represent-
ing the SUT. All other instances correspond to the different interfaces of
the SUT. Together with the contained message exchange from and to the
interfaces of the SUT, this information can be used to derive corresponding
test cases. By taking MSC time annotation into account, even real-time test
cases can be generated this way.
This shall be demonstrated by an example. The IUT is an Initiator imple-
mentation of the Inres protocol. The SUT can be accessed by using the
interfaces ISAP and MSAP. The test purpose is to test for each of 100 data
transfers which are initiated consecutively every 10ms that the latency is
below 5ms. For doing this, first, a connection needs to be established, and
after the test, the connection has to be released.
A formalisation of this test purpose in form of an MSC is shown in Figure 4.3.
The MSC describes the test purpose from the point of view of the SUT,
i.e. only the required information exchange at the ISAP and MSAP service
access points is shown. The test purpose includes no assumptions about
implementation of the test system, e.g. the number of test components and
the required synchronisation among test components are not specified.
The TIMEDTTCN-3 module containing the real-time test case inresRTex-
ample shown in Figure 4.6 is generated automatically from the test purpose

ISAP

UT

InresSystemType

SUT

MSAP

LT

ConnectionEstablishment

[0.01]+0.01

[0.0,0.005)

IDATreq(data)

MDATind
(DT,no,data)

MDATreq(AK,no)

loop <100>

ConnectionRelease

msc inresRTexample

Figure 4.3: Real-Time Test Purpose for Inres
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Figure 4.4: Local Test Architecture Used for Test Case Generation

example in Figure 4.3 and the local test architecture provided in Figure 4.4.2

The test architecture consists of the MTC only, which controls both inter-
faces of the SUT.

4.2 Test Generation from MSC Test Purposes

In the following, it is explained how MSCs specifying real-time test purposes
can be interpreted and used for automatically generating TIMEDTTCN-3
test cases. For a concise presentation, this section is restricted to test gen-
eration for non-distributed test architectures.

4.2.1 Interpretation of MSC Test Purposes

Even when using the formal representation of MSC for expressing a test
purpose, different interpretations of a test purpose MSC are possible. For
example, the approach described in [BBJ+02] generates one test case for
each of the traces which are possible due to the partial order semantics of
MSC. In contrast, the approach presented in this chapter extracts just one
single representative path from the test purpose MSC, by taking the queue
semantics of TIMEDTTCN-3 into consideration. (More details are explained
in Section 4.2.2.) However, e.g., the interpretation of non-SUT instances,
i.e. all MSC instances except for the one named SUT, as interfaces of the
SUT to its environment is a common interpretation of test purpose MSCs.

2Figure 4.4 depicts the same test architecture which is described on Page 32. The
figure is a copy of Figure 2.27 and just provided here to enhance the readability of this
chapter.
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Figure 4.5: Time Constructs Applicable in Real-Time Test Purpose MSCs

The usage of MSCs for generating real-time test cases is a novel approach.
Thus, no common interpretation of real-time test purpose MSCs exists, yet.
Though, the proposed interpretation of MSC time annotations used in test
purposes is intuitive and straightforward. Their meaning is discussed in the
following by referring to the MSCs explained in Figure 2.11 on Page 21. For
a better readability, a copy of them is provided in Figure 4.5.
In real-time test purpose MSCs, it is allowed to attach MSC time con-
straints and measurements to the communication events along the non-SUT
instances. Time constructs attached to events on the SUT instance axis are
not observable and thus make no sense for test specification.3 Therefore,
such time constructs cannot be translated.
While the meaning of MSC time measurements (Figure 4.5c) in test pur-
pose descriptions is straightforward (namely, observation of the point in
time when an event occurs and its storage in a TIMEDTTCN-3 variable),
MSC time constraints can be used with two different aims: They may ei-
ther describe a timely stimulation of the SUT, i.e. a real-time requirement
rather on the test system (time constrained stimulus), or a response from
the SUT that shall arrive within a certain period of time (time constrained
observation). Both cases look similar, but can be distinguished as follows:

Time constrained stimuli have to be performed by the test system if
absolute time constraints are attached to send events, or relative time
constraints are attached to a pair of events, where the second event is
a send event4 (cf. Figure 4.5a).

Time constrained observation have to be performed by the test system
if absolute time constraints are attached to receive events, or relative

3The same is valid for non-communication events, like MSC actions.
4The type of the first event involved in the relative time constraint is irrelevant, since

the time constraint is essentially imposed on the second event.
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time constraints are attached to a pair of events, where the second
event is a receive event (cf. Figure 4.5b).

In the MSC test purpose example (Figure 4.3), both types of relative time
constraints are used. The cyclic real-time requirement constraint can be un-
rolled to a sequence of relative time constraints which require to send a stim-
ulus every 10ms.5 The second time constraint is attached to the messages
IDATreq and MDATind and describes thus a time constrained observation of
MDATind.
With respect to MSC time measurements and MSC time constraints which
are used for time constrained observation, it has to be noted that their oc-
currence in a real-time test purpose MSC results in a similar test behaviour:
In both cases, the time when the involved event occurred has to be retrieved
by the test system. But, only time constrained observations allow to attach
actual boundary values of a real-time requirement to the graphical MSC
symbols. In contrast, an actual real-time requirement cannot be specified
by MSC time measurements, because they only allow to specify names for
observations, but do not impose concrete requirements on time values. As a
result of these considerations, MSC time constraints are the preferred means
for specifying real-time requirements in test purposes. Nevertheless, MSC
time measurements may be useful for gathering time information, which is
reused later-on, e.g. as part of other MSC time constraints.
Based on the given interpretation of real-time constructs in test purpose
MSCs, suitable transformation rules for obtaining TIMEDTTCN-3 test cases
are presented in the remainder of this chapter. These rules have been imple-
mented by the author in a prototype tool which accepts machine processable
textual MSC format as input and generates TIMEDTTCN-3 core notation as
output. It is based on a tool described in [Ebn04] which allows to transform
pure functional MSC test purposes into TTCN-3. Thus, before the trans-
formation of real-time concepts is explained in Section 4.2.3, the underlying
transformation of functional concepts is briefly described, first.

4.2.2 Transformation of Functional Concepts

The transformation of static aspects of an MSC test purpose into TTCN-3
is simple. The name of the MSC is taken as test case name and as a suffixed
module name. (In the example, lines 1 and 4 of Figure 4.6 are derived from
the MSC name inresRTexample in Figure 4.3.)
The interfaces of the SUT are described by non-SUT MSC instances. They
are mapped to TTCN-3 ports, i.e. the MSC instance type is taken as name of
a TTCN-3 port instance. (The name of those instances is ignored, though.)

5In test purpose MSCs, the data language of TIMEDTTCN-3 is used, thus 10ms has
to be written as 0.01.
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The type of the SUT instance is taken as TTCN-3 component type for the
Abstract Test System Interface. (The runs on InresSystemType specification
in Line 4 of Figure 4.6 is generated from Figure 4.3. As well, the TTCN-3
port instances used for sending and receiving in lines 18, 19, and 21 of
Figure 4.6 are derived from the MSC instance types in Figure 4.3.)
For the mapping of MSC events to TTCN-3 statements, only the events
along non-SUT instances are relevant. MSC send events on those instances
are mapped to TTCN-3 send operations and MSC receive events are mapped
onto TTCN-3 receive operations.6 The MSC message names are expected
to refer to TTCN-3 data types or, in case of procedure-based communica-
tion, to signature definitions. MSC message parameters refer to TTCN-3
templates or define inline templates. (The generated communication opera-
tions are located in lines 18, 19, and 21 of Figure 4.6).
For the component types and contained ports, but also for message types and
templates, corresponding definitions are required. However, these cannot be
generated from MSC test purposes. They have to be specified manually or
imported from other TTCN-3 modules. For the Inres example, the type
definition modules presented in Section 2.5.1 might be imported.
In addition to the generation of basic communication operations from test
purpose MSCs, timers, actions, and local conditions on interface instances
are supported. MSC timer events have a one-to-one mapping to TTCN-3
timer operations. MSC actions can be used to specify additional test be-
haviour in form of TTCN-3 statements contained in action boxes. Local
setting conditions are used for the specification of test verdicts, i.e. they are
translated into a setverdict operation. Non-local conditions in MSC test
purposes can be used to specify synchronisation points explicitly, i.e. force
a specific order of test events.
An MSC test purpose specification may also include references and the in-
line expressions alt, loop, and par. Each usage of a reference or an inline
expression is considered as one single event, which in case of references or
inline expressions may include partially ordered events. This means, these
constructs are synchronisation points, even though this violates the official
MSC semantics [ITU99b] which assumes a weak sequential composition.
Indeed, many test case specifiers regard this as counter-intuitive anyway.
Hence, the corresponding TTCN-3 constructs generated by the suggested
transformation rules do not allow that sort of interleaving. The transfor-
mation algorithm maps MSC references to TTCN-3 function calls (lines
8 and 23 of Figure 4.6), MSC alt inline expressions to TTCN-3 alt state-
ments7, MSC par inline expressions to TTCN-3 interleave statements, and

6The generation of procedure-based communication behaviour is possible as well, since
both MSC and TTCN-3 distinguish between the two types of communication.

7This means, each branch of an MSC alternative must start with an observation, oth-
erwise it describes a non-deterministic test case since late choice is only possible in MSC.
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1 module inresRTexampleModule {
2 import from evaluationLibrary all;
3
4 testcase inresRTexample() runs on InresSystemType {
5 var float sendTime1:=−1.0;
6 var integer iterator1:=0;
7 var default otherwiseFailDefault:=activate(otherwiseFail);
8 ConnectionEstablishment();
9 for ( iterator1 :=0; iterator1<100; iterator1:=iterator1+1) {

10 if (sendTime1==−1.0) {
11 sendTime1:=self.now+0.01;
12 }
13 else {
14 resume(sendTime1);
15 sendTime1:=sendTime1+0.01;
16 }
17 log(TimestampType:{self.now,”IDATreq1”});
18 ISAP.send(IDATreq:{data});
19 MSAP.receive(MDATind:{DT,number,data});
20 log(TimestampType:{self.now,”MDATind2”});
21 MSAP.send(MDATreq:{AK,number});
22 }
23 ConnectionRelease();
24 deactivate(otherwiseFailDefault);
25 setverdict(pass);
26 stop;
27 }
28
29 control {
30 var testrun myTestrun;
31 var logfile myLog;
32 var verdicttype myVerdict;
33 myTestrun:=execute(inresRTexample());
34 myVerdict:=myTestrun.getverdict;
35 if (myVerdict==pass) {
36 myLog:=myTestrun.getlog;
37 myVerdict:=evalMultipleDelaysOffline(”IDATreq1”,”MDATind2”,
38 0.0, incl ,0.005, excl ,myLog);
39 myTestrun.setverdict(myVerdict);
40 }
41 }
42 } // End of module inresRTexampleModule

Figure 4.6: TIMEDTTCN-3 Test Case Generated from Figure 4.3

MSC loop inline expressions to TTCN-3 for statements (Line 9). For the
latter, optional guarding conditions containing boolean expressions may be
used as termination criteria of a loop. HMSCs can be used to structure and
concatenate test cases.
For the calculation of the control flow of TTCN-3 test cases, the Autolink
approach [SEG+98, GKSH99, Koc01, Sch03] is used as generation algorithm.
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The algorithm computes a so called path from the partially ordered set
of MSC events. Such a path specifies a set of traces which includes no
nondeterminism due to non-receiving events, but considers all interleavings
due to receiving events. This path representation takes the port queue
semantics of TTCN-3 into consideration. A path can be visualised in form
of a tree, where branching is related to alternative receiving events. The
TTCN-3 generation algorithm computes a TTCN-3 test case that allows to
test all sequences of events described by the corresponding path.
TTCN-3 default activation and deactivation are automatically added at the
top and bottom of a generated test case (lines 7 and 24 of Figure 4.6).
The altstep otherwiseFail is also automatically generated, it just sets the fail
verdict for any unexpected event (lines 3–12 of Figure 4.7). The pass verdict
is automatically assigned at the end of the test case just before the stop
statement (lines 25 and 26 of Figure 4.6). Inconclusive behaviour has to be
added manually by adding it either as an altstep or to the test purpose MSC
itself using a local setting condition to assign the inconc verdict. However,
the latter solution is not in the spirit of a test purpose, anymore.

4.2.3 Transformation of Real-Time Concepts

In Section 4.2.1, it has been explained that time constrained stimuli have to
be distinguished from time constrained observation. Thus, for transforming
MSC time constraints into TIMEDTTCN-3 real-time test cases, the different
usages of time constructs in MSC test purposes have to be treated separately.

Time Constrained Observations
For real-time test case generation, time constrained observations contained
in test purpose MSCs are translated to TIMEDTTCN-3 by creating time
stamps for the observed events. For offline evaluation, the time stamps
are stored in the log file produced by the test case. In the online evaluation
approach, time stamps are stored in ordinary variables and compared during
the test run.
In the following, only offline evaluation is discussed. Online evaluation is
intended to be used in tests that react based on the observed real-time
properties. Hence, to make reasonable use of online evaluation, it would be
necessary to specify how to deal with the outcome of the online evaluation.
Indeed, a test purpose should abstract from that. Apart from that, all con-
siderations can be generalised to online evaluation, because both approaches
are based on the generation of time stamps. Furthermore, only relative time
constraints are considered, since they are more relevant than absolute ones.
The example test purpose in Figure 4.3 contains a latency real-time require-
ment, i.e. a time constrained observation. Since the constraint is attached
to the messages IDATreq and MDATind, the TIMEDTTCN-3 statements for
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1 module evaluationLibrary {
2
3 altstep otherwiseFail () {
4 [ ] any port.receive {
5 setverdict(fail)
6 stop;
7 }
8 [ ] any timer.timeout {
9 setverdict(fail)

10 stop;
11 }
12 }
13
14 type record TimestampType {
15 float logtime,
16 charstring id
17 }
18
19 type enumerated IntervalBoundaryType { excl, incl };
20
21 function evalLatencyOffline(charstring messageIdA, charstring messageIdB,
22 float lowerbound, IntervalBoundaryType lowerboundarytype,
23 float upperbound, IntervalBoundaryType upperboundarytype,
24 logfile timelog) return verdicttype {
25 // ...
26 }
27 } // End of module evaluationLibrary

Figure 4.7: Library with Time Stamp and Evaluation Function Definitions

generating time stamps (lines 17 and 20 of Figure 4.6) are placed directly
before and after the associated communication operations (lines 18 and 19).
The generated time stamps contain the value of the local clock and a label
of type charstring. The value of the local clock may be obtained by the
self.now statement. The label is used to identify time stamps afterwards.8

The value of the label is generated from the message name used in the MSC
plus a consecutive number to distinguish between different occurrences of
the same message. The type definition for the TimestampType is provided
by the predefined TIMEDTTCN-3 module evaluationLibrary (Figure 4.7) in
lines 14–17. The necessary import statement is added automatically at the
top of the TIMEDTTCN-3 module containing the generated real-time test
case (Line 2 of Figure 4.6).
The module control part is automatically created in addition to the real-
time test case (lines 29–41 of Figure 4.6). The structure is identical to the

8In Chapter 3, enumerations were used for that purpose. The particular implementa-
tion of time stamp labels is irrelevant, as long as they are distinguishable. However, to
avoid a cluttered enumeration type, charstrings are used in this approach.
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one presented in Chapter 3. A call to an offline evaluation function is added
for each time constrained observation defined in the MSC test purpose. In
the example in Figure 4.6, the evaluation function evalMultipleDelaysOffline
is called in lines 37 and 38. The actual parameters are generated from the
interval of the real-time constraint in the test purpose MSC and from the
same label identifiers which were used inside the related log statements.
The called evaluation functions are provided together with the time stamp
type definition in TIMEDTTCN-3 libraries. For example, the predefined
evaluation function evalMultipleDelaysOffline is used to retrieve and evaluate
a sequence of matching pairs of time stamps from a given log file. The
two charstring parameters of the function identify the time stamps to be
compared. The next four parameters define the time interval between two
time stamps. Upper and lower bound of the interval are defined by two
float values. The values incl and excl define whether a boundary is closed or
open, i.e. whether the evaluation function uses ≤ or < for comparisons. The
definition of incl and excl as elements of an enumeration type is shown in
Line 19 of Figure 4.7. The last parameter of the evaluation function refers
to the log file which is subject of evaluation.
Only a stub of the evalMultipleDelaysOffline evaluation function is depicted
in lines 21–26 of Figure 4.7. The actual implementation is very similar to
evalLatencyOffline provided on Page 66 in Figure 3.12, except for the fact that
evalMultipleDelaysOffline does not evaluate a fixed number of time stamps.
Instead, as many matching time stamps as possible are retrieved.9

Placement of Time Stamping Statements
In an ideal world, no time passes between a send or receive event and the
corresponding time stamp generation, and hence, the time stored in a time
stamp is the actual time of an event. For abstract test specification, this
assumption might be valid. However, since executable test cases are im-
plemented on real hardware, some time passes between both statements.
Thus, there is a choice of putting a self.now operation before or after a
time constrained event derived from a test purpose. For receive opera-
tions, the self.now operation has to be put after the receive, because a
receive operation is blocking. (In Figure 4.6, this is shown in lines 19–20,
where the self.now operation is contained in a log statement.) But for a
send operation, there is the option to put a self.now operation before or
after.
In the Inres example, the first event of the latency time constraint relates
to sending the message IDATreq. Thus, the log statement associated to
the send operation may be inserted before or after the send operation in

9The reason is that the problem of predicting from the test purpose MSC the number
of time stamps which are generated during a test run is undecidable.
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Line 18 of Figure 4.6. In the first case, the observed duration would be
slightly longer than in the second case. Therefore, the choice of placement
should depend on whether the time constraint is used to prescribe a minimal
duration or a maximal duration.
If the time constraint has only an upper bound (or the lower bound is zero
as, e.g., [0.0,0.005) in Figure 4.3), a maximal duration is specified, i.e. the
SUT shall not exceed the upper bound. In this case, choosing the placement
which yields the shorter observed duration might result in a pass verdict
even though the actual duration was longer and slightly violated the real-
time constraint. Therefore, the self.now operation shall be placed just
before the send operation as shown in lines 17–18 of Figure 4.6. In this
case, a slightly larger duration is observed and one can be sure that if even
this larger duration meets the real-time requirement, the actual duration
fulfils the real-time requirement in any case.
The opposite considerations hold for testing minimal durations, e.g. intervals
like [1ms, ), for requiring that an SUT shall not respond too early. In this
case, one is on the safe side if a slightly shorter observed duration still
meets the real-time requirement, because the actual occurred duration will
be slightly larger. Thus, the self.now operation shall be placed just after
the first event.
In the combined case10, i.e. neither the lower interval bound is omitted or
zero, nor the upper bound is omitted (e.g. [8ms,10ms]), it is a matter of taste
which bound to give the priority. If one assumes that encoding for sending
and decoding for receiving takes a similar amount of time, the self.now
operation shall be placed after the send operation because it has also to be
placed after the receive operation. This may lead to a measurement, which
is closer to reality since the extra delay introduced to both operations by
the test runtime system will eliminate each other.

Time Constrained Stimuli
A time constrained stimulus in an MSC test purpose description is trans-
lated into a TIMEDTTCN-3 resume statement which is used to schedule the
execution of the related send operation. A generic TIMEDTTCN-3 skeleton
for a time constrained stimulus is shown in Figure 4.8. If the time constraint
consists of a single point in time, like [d], this value can be used as relative
offset to the self.now expression as in Line 3 of Figure 4.8.
If the time constraint is an interval of the form [t1, t2], any of the values inside
the interval is possible as delay of the send operation. This may lead to an
infinite number of test cases, which is infeasible in practise. By using test
data selection heuristics from functional data testing, like boundary values

10Specifying just a single element as interval (e.g. [5ms]) for a time constrained obser-
vation is not recommended, because it is very unlikely that exactly that value is matched.
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1 float sendTime;
2 myport.receive; / myport.send;
3 sendTime:=self.now+d;
4 ...
5 resume(sendTime);
6 myport.send;

Figure 4.8: TIMEDTTCN-3 Skeleton for Timed Stimulus

[Mye79, Bei95], an appropriate number of test cases can be selected, e.g.
d:=t1 for testing the extreme lower and d:=t2 for testing the extreme upper
allowed point in time. (In the implemented real-time test case generation
tool, just the lower boundary is selected, because it is more likely that an
SUT fails to fulfil a real-time requirement if it is stimulated in a fast manner.)

Time Constraints Attached to Inline Expressions and References
For MSC time annotations involving MSC inline expressions and MSC ref-
erences, several special cases have to be considered. For example, cyclic
time constraints in MSC loops using the MSC extension presented in Sec-
tion 2.3.3 can be treated almost like ordinary relative time constraints: In
case of a time constrained cyclic observation (Figure 4.9), time stamps are
not generated for a pair of two communication events, but for a sequence of
a single communication event. Hence, a call to a different predefined evalua-
tion function, working on sequences of a single time stamp only, is necessary.
For a time constrained cyclic stimulus (e.g. sending message IDATreq every
10ms as in the Inres test purpose example in Figure 4.3), a different set of
statements than presented in Figure 4.8 is required: the first execution of
the send operation has to be performed immediately, while all subsequent
executions have to adhere to the cyclic time constraint. This is achieved by
the TIMEDTTCN-3 statements given in lines 5 and 10–16 of Figure 4.6.
For MSC inline expressions and references, MSC allows to impose time an-
notations to the top or bottom of the respective frame. In these cases, the

PCO SUT

(t1,t2)+t

m1

loop

msc ConstrainedCyclicObservation

Figure 4.9: Time Constrained Cyclic Observation
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PCO SUT

m1

[t1,t2] . . . . . .

m2

m3

alt

msc TimeConstrainedAltTop 1 port.receive(m1);
2 log(TimestampType:{self.now, ”m1”});
3 ...
4 alt {
5 [ ] port.receive(m2) {
6 log(TimestampType:
7 {self .now, ”Either m2 or m3”});
8 }
9 [ ] port.receive(m3) {

10 log(TimestampType:
11 {self .now, ”Either m2 or m3”});
12 }
13 }

(a) Test Purpose (b) Derived Test Case

Figure 4.10: Time Constraint Attached to First Event of Alternative

time annotation refers to the first or last event which actually occurs inside
the inline expression or reference, respectively. Thus, for time constrained
observation, a time stamp has to be generated for every first or last event
which is possible due to alternatives or interleaving. For time constrained
stimuli, this is not relevant, because only one path is generated by the tool.
Since a magnitude of combinations is possible (e.g. time constraint attached
to top/bottom of inline expression/reference, time constrained observation/
time constrained stimulus), just a few examples are given in the following.
In Figure 4.10a, a time constrained observation is attached to the top of
an alt inline expression. Thus, for every possible first event, a time stamp
is created in the generated TIMEDTTCN-3 code (lines 6–7 and 10–11 of
Figure 4.10b). In order to be able to evaluate the log file independently
from the actual branch, the tool generates the same label (Either m2 or m3)
in both branches of the alternative.

PCO SUT

m1

m2

alt

[t1,t2] . . . . . .
m3

msc TimeConstrainedAltBottom

1 alt {
2 [ ] port.receive(m1) {
3 }
4 [ ] port.receive(m2) {
5 }
6 }
7 log(TimestampType:
8 {self .now, ”Either m1 or m2”});
9 ...

10 port.receive(m3);
11 log(TimestampType:{self.now, ”m3”});

(a) Test Purpose (b) Derived Test Case

Figure 4.11: Time Constraint Attached to Last Event of Alternative
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The treatment of time annotations which are attached to the bottom of
MSC inline expressions (Figure 4.11a) and references is simpler. In this
case, a time stamp is just generated after the TIMEDTTCN-3 alt construct
as shown in lines 7–8 of Figure 4.11b.
Time annotations attached to the bottom of loop inline expressions can be
treated in the same way as in Figure 4.11. For annotations attached to the
top, it has to be distinguished whether the loop starts with several possible
observations (due to partial ordering or an alt expression) or with either
just one observation or with a stimulus. In the latter cases, a time stamp
may just be generated before the actual loop starts. In the first case, the
situation is similar to the one described in Figure 4.10. However, the time
stamp shall only be generated in the first iteration of the loop. Thus, the
first iteration containing the time stamp creation has to be unrolled, while
all further iterations may be part of a TIMEDTTCN-3 for loop.

4.3 Distributed Test Architectures

In the previous section, test generation for local test architectures was dis-
cussed. But, if the SUT is physically distributed, the test system usually
has to be distributed, too. Since TIMEDTTCN-3 supports distributed test-
ing as well, basically the same transformation rules are also applicable for
generating distributed real-time test cases. However, when testing real-time
requirements imposed on events which occur at different test components,
a more sophisticated test generation is required.

4.3.1 Generation of Distributed Functional Test Cases

The generation of pure functional test cases for distributed test architectures
from test purpose MSCs has been well studied in [GKSH99, Koc01, Sch03].
The therein described Autolink tool is able to generate TTCN-2 test cases
for distributed test architectures.
According to [GKSH99], basically two additional kinds of information have
to be provided to generate distributed test cases from a test purpose MSC:

Test configuration: The test architecture for which the distributed test
cases shall be generated has to be known: How many Parallel Test
Components (PTCs) are used in addition to the Main Test Component
and how are the Points of Control and Observation (PCOs) assigned
to the test components?

Synchronisation of Distributed Test Behaviour: Distributed test
components need to synchronise their behaviour with each other to
achieve their common goal. For generating distributed test behaviour,
a tool needs to know at which points of the control flow synchronisation
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is desired. This has also an influence on the test configuration, because
for exchanging coordination messages, test components require further
ports in addition to their PCOs.

With respect to the test configuration, the Autolink tool assumes a test
architecture where each PCO is assigned to an individual PTC. For each
non-SUT instance axis of a test purpose MSC, a PTC is created. The MTC
is just responsible for creating the PTCs and for coordinating their activities.
Therefore, each PTC involved in synchronisation has an additional port for
exchanging coordination messages with the MTC and the MTC has as many
port for the coordination with its PTCs. A corresponding distributed test
architecture for two PCOs is depicted in Figure 4.12. (Test cases may as well
be automatically generated for other distributed test architectures. Just the
routing of coordination messages differs in these cases.) The test behaviour
for each PTC can be obtained by simply slicing a test purpose MSC vertically
and applying for each non-SUT instance separately the transformation rules
presented in Section 4.2.2.
For the specification of test behaviour synchronisation, the Autolink tool
supports to add shared MSC conditions to the non-SUT instances of a test
purpose MSC. In this case, coordination messages are automatically gener-
ated for synchronising all PTCs which are associated to a PCO covered by an
MSC condition. The MTC is responsible for distributing the coordination
messages, i.e. to wait for messages from the involved PTCs which indicate
that the behaviour preceding the synchronisation condition has finished and
to notify subsequently all involved PTCs to proceed. As a result, the de-
scribed approach allows to take a test purpose MSC as given in Figure 4.13
as input and to generate coordination messages exchanges as shown in lines
14–19 of Figure 4.14 and in Figure 4.17.
The presented Autolink approach is not only applicable to obtain TTCN-2
test cases, but can also be used for generating distributed TTCN-3 test

Real Test System Interface

Abstract Test System Interface

TTCN−3 Test system PCO2PCO1

PCO1 PCO2

PTC2

CP1

CP CP

CP2

MTC

PTC1

Figure 4.12: Distributed Test Architecture with Two PTCs
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cases, because TTCN-3 is semantically downwardly compatible to TTCN-2.
Moreover, the enhanced expressiveness of TTCN-3 allows to generate even
shorter test cases with respect to the reception of coordination messages by
the MTC: Since it is not possible to predict the order in which coordination
messages arrive at the MTC, Autolink has to generate TTCN-2 code for
all possible permutations of coordination message receptions. In contrast,
TTCN-3 supports a shorter specification of permutated message arrival by
providing the interleave statement. The automatically generated TTCN-3
code for the MTC’s coordination behaviour can take advantage of this (lines
14–17 of Figure 4.14).

4.3.2 Generation of Distributed Real-Time Test Cases

Based on the Autolink approach, also distributed real-time test cases can
be generated from real-time test purpose MSCs. As long as each real-time
requirement can be treated by a PTC on its own, i.e. time annotations in
the test purpose MSC are always local to non-SUT instances, the transfor-
mation rules described in Section 4.2.3 still apply. But, if test cases shall be
generated which involve real-time properties spanning over several PTCs,
modified transformation rules are necessary.

Time Constrained Observations
If a time constrained observation spans over several test components, it
is only reasonable to compare the time stamps which are generated by dis-
tributed test components as long as their local clocks are synchronised. This
can be achieved in TIMEDTTCN-3 by creating the concerned PTCs in the
same timezone. Offline evaluation can then easily be applied to compare the
logged time stamps which refer to clocks from within the same timezone.

PCO1 PCO2 PCO3 SUT PCO4 PCO5 PCO6

[t1,t2]

m1

[ t3,t4]

m2

Synchronise

[t5,t6]

m3

[t7]

m4

Synchronisem5

m6

m7

msc DistributedTimeAnnotation

Figure 4.13: Test Purpose with Distributed Time Annotations
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1 type enumerated timezones {
2 tz PCO2 PCO3, tz PCO4 PCO5 PCO6
3 }
4
5 testcase DistributedTimeAnnotation() runs on AllCPType system SystemType {
6 var ptc PCO1Type ptc PCO1:=ptc PCO1Type.create;
7 var ptc PCO2Type ptc PCO2:=ptc PCO2Type.create(tz PCO2 PCO3);
8 var ptc PCO3Type ptc PCO3:=ptc PCO3Type.create(tz PCO2 PCO3);
9 var ptc PCO4Type ptc PCO4:=ptc PCO4Type.create(tz PCO4 PCO5 PCO6);

10 var ptc PCO5Type ptc PCO5:=ptc PCO5Type.create(tz PCO4 PCO5 PCO6);
11 var ptc PCO6Type ptc PCO6:=ptc PCO6Type.create(tz PCO4 PCO5 PCO6);
12 var float timeValue:=0.0;
13 // ...
14 interleave {
15 [ ] CP4.receive(float:0.0) {}
16 [ ] CP5.receive(float:0.0) {}
17 }
18 CP4.send(float:0.0);
19 CP5.send(float:0.0);
20 CP5.receive(float:?) −> value timeValue;
21 CP6.send(float:timeValue);
22 }

Figure 4.14: Generated Timezone Enumeration and MTC Behaviour

The simplest solution would be to assume that just all PTCs are created in
the same timezone. Indeed, this assumption might be too strict. Instead it is
sufficient to partition the PTCs into minimal sized sets taking the transitive
connection due to distributed time annotations into account.
This shall be illustrated for the test purpose given in Figure 4.13: PCO1
is only involved in the assessment of local time stamps and hence, the re-
sponsible PTC needs no clock synchronisation at all. PCO2 and PCO3 are
involved in the same time constraint, thus, their PTCs need to be clock
synchronised. PCO4 and PCO5 share a time constraint as well as PCO5 and
PCO6. Thus, all these three PCOs need to be created in the same timezone.
Such timezone sets can be calculated using simple graph algorithms [CLR90].
The resulting TIMEDTTCN-3 timezones enumeration type might look like
in lines 1–3 of Figure 4.14. The MTC is responsible for creating the PTCs
in the correct timezones as shown in lines 6–11.11 Further behaviour of the
MTC, like connecting its coordination ports with the PTCs, mapping their
PCOs to the test system interface and starting the PTCs, is not shown.
Once the individual PTCs are clock synchronised, their behaviour for cre-
ating time stamps can be generated by the same transformation rules as
described in Section 4.2.3. Two examples for receiving messages m3 and m5
and the corresponding time stamp creation are shown in lines 29–37 of Fig-

11Since the MTC itself is not involved in creating time stamps, the MTC may be created
in the module control part without any clock synchronisation parameter.
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23 type record TimestampType {
24 float logtime,
25 timezones componentzone,
26 charstring id
27 }
28
29 function ptc PCO2Behaviour() runs on ptc PCO2Type {
30 PCO2.receive(m3);
31 log(TimestampType:{self.now, self.timezone,”m1”});
32 }
33
34 function ptc PCO3Behaviour() runs on ptc PCO3Type {
35 PCO3.receive(m5);
36 log(TimestampType:{self.now, self.timezone,”m5”});
37 }

Figure 4.15: Generated Time Stamp Type and PTC Behaviour

ure 4.15. The only difference to test generation for local test architectures is
that the timezone is additionally part of the TimestampType (lines 23–27),
and hence, gets also logged (lines 31 and 36).
Figure 4.16 depicts the module control part which has to be generated for
the test purpose in Figure 4.13. It contains calls to the offline evaluation
functions related to the time constrained observations described by the test
purpose. In Line 70, the evaluation function evalMultipleDelaysOffline is
called with none as timezone parameter, since the time stamps m1 and m7

62 control {
63 var testrun myTestrun;
64 var logfile myLog;
65 var verdicttype myVerdict;
66 myTestrun:=execute(DistributedTimeAnnotation());
67 myVerdict:=myTestrun.getverdict;
68 myLog:=myTestrun.getlog;
69 if (myVerdict==pass) {
70 myVerdict:=evalMultipleDelaysOffline(”m1”,”m7”,none,t1,incl,t2,incl,myLog);
71 myTestrun.setverdict(myVerdict);
72 myVerdict:=evalMultipleDelaysOffline(”m2”,”m4”,tz PCO4 PCO5 PCO6,
73 t3, incl ,t4, incl ,myLog);
74 myTestrun.setverdict(myVerdict);
75 myVerdict:=evalMultipleDelaysOffline(”m3”,”m5”,tz PCO2 PCO3,
76 t5, incl ,t6, incl ,myLog);
77 myTestrun.setverdict(myVerdict);
78 }
79 }

Figure 4.16: Generated Module Control Part
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38 type port CoordinationPoint message {
39 inout float;
40 }
41
42 function ptc PCO4Behaviour() runs on ptc PCO4Type {
43 PCO4.send(m2);
44 log(TimestampType:{self.now, self.timezone,”m2”});
45 CP.send(float:0.0);
46 CP.receive(float:0.0);
47 }
48
49 function ptc PCO5Behaviour() runs on ptc PCO5Type {
50 CP.send(float:0.0);
51 CP.receive(float:0.0);
52 PCO5.receive(m4);
53 log(TimestampType:{self.now, self.timezone,”m4”});
54 CP.send(float:self.now);
55 }

Figure 4.17: Generated Coordination Messages and PTC Behaviour

were created by a PTC which is not clock-synchronised. However, the other
calls to this evaluation functions are performed with the respective timezone
actual parameter in which the corresponding time stamps were created (lines
72–73 and 75–76).
The implementation of the evalMultipleDelaysOffline evaluation function is
not shown. It is similar to the previously presented offline evaluation func-
tions. Though, it has to be assured that the evaluation function is able
to cope with the possible orderings of time stamps. For example, the time
stamps for the observation of m3 and m5 at PCO PCO2 and respectively
PCO3 may occur either in the order m3, m5, or m5, m3 due to interleaving
of partially ordered reception events.12

For restricting the possible orderings of events, the functional synchronisa-
tion mechanisms described in Section 4.3.1 may be used in real-time test
purpose MSCs. However, even if such synchronisation conditions are used
in the context of time annotations, they restrict actually the functional be-
haviour of sending and receiving, i.e. the path which is generated by the
Autolink approach. Since the generation of a time stamping statement is
based on that path, synchronisation conditions need not to be especially
considered for real-time test generation.
In the example given in Figure 4.13, a condition has been added to synchro-
nise the behaviour of the PTCs responsible for PCO4 and PCO5. Thus, the

12In fact, this has already to be considered when generating test cases for local test
architectures. Though, the MSC test purpose example in Figure 4.3 did not allow any
reordering. Hence, this problem did not arise.
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SUT has to be stimulated by message m2 prior to the observation of message
m4.13 According to the presented synchronisation approach, coordination
messages are exchanged between the PTCs and the MTC (lines 45–46 and
50–51 of Figure 4.17). Messages of type float are used for synchronisation.
The definition of the corresponding CoordinationPoint port type is given in
lines 38–40. The MTC waits for the PTCs to reach the synchronisation point
and signals subsequently the PTCs to proceed (lines 14–19 of Figure 4.14).

Time Constrained Stimuli
A test purpose MSC may as well contain time constrained stimuli which span
over two PTCs. (For example, PCO5 and PCO6 in Figure 4.13.14) Like for
time constrained observations, the local clocks of the involved PTCs need
to be synchronised. Thus, the same considerations on timezones and PTC
creation also apply for time constrained stimuli.
A stimulus determined by a relative time constraint must be scheduled by the
associated PTC using the TIMEDTTCN-3 resume statement. The schedule
is based on the point in time when the first event of the relative time con-
straint occurred. Thus, the necessary time information has to be transferred
from the PTC which is responsible for the first event to the stimulating PTC.
This can be achieved by using messages exchanged via the existing Coordi-
nationPoint port type. These messages are able to carry a TIMEDTTCN-3
float value as payload. For the assumed distributed test architecture, this
means that such time information is transferred from one PTC to another
via the MTC. The test system must be fast enough to be able to deliver the
coordination message to the stimulating PTC in time.
Figure 4.17 shows in Line 54 the sending of a coordination message with
the time stamp of the first event to the MTC. The MTC just forwards the
received value via port CP6 to the PTC associated to PCO6 (lines 20 and 21
of Figure 4.14). The behaviour of that PTC is depicted in Figure 4.18. In
Line 58, the coordination message carrying the previously generated time
stamp for the first event is received. Then, in Line 59, the PTC resumes
until firstEventTime+t7 is reached. After that, the actual stimulus is sent.
The described approach of transferring time stamps during a test run via
coordination messages can also be exploited for generating real-time test

13Actually, the path generated using the Autolink approach would posses this property
even without the synchronisation condition, since send events are prioritised to minimise
the number of interleavings.

14In this example, a synchronisation condition is used to assure that this part of the
test purpose describes actually a time constrained stimulus and not alternatively a time
constrained observation. In case the synchronisation condition is absent, the path gener-
ated by the Autolink approach would prioritise the sending of m6 against the reception of
m4. As a result, the time constrained stimulus would be turned into a time constrained
observation.
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56 function ptc PCO6Behaviour() runs on ptc PCO6Type {
57 var float firstEventTime:=0.0;
58 CP.receive(float:?) −> value firstEventTime;
59 resume(firstEventTime+t7);
60 PCO6.send(m6);
61 }

Figure 4.18: Generated PTC Behaviour for Timed Constrained Stimulus

cases which make use of online evaluation. But, as already discussed in this
chapter, online evaluation does not fit very well to the abstraction of test
purposes.

4.4 Summary

This chapter presented the generation of TIMEDTTCN-3 real-time test cases
from test purpose descriptions which are formalised using MSC. This allows
to derive test architecture specific test behaviour from functional and real-
time requirements which are specified from the perspective of the SUT. The
test development process may be accelerated by automating this test de-
velopment activity. To achieve this, a tool was implemented that allows
to generate TIMEDTTCN-3 real-time test cases for a local test architec-
ture. This tool is based on an existing tool for the generation of functional
TTCN-3 test cases from test purpose MSCs.
The underlying transformation rules for obtaining TIMEDTTCN-3 real-time
test cases from time annotations in test purpose MSCs have been explained.
As an example, they have been applied to a real-time test purpose for test-
ing real-time properties of an Inres protocol implementation. Furthermore,
the generation of real-time test cases for distributed test architectures has
been discussed. In this context, it has been shown how to deal with real-
time properties which span over several, distributed test components. By
transferring time stamps during a test run, it is even possible to react online
on time stamps gathered at remote test components.

Related Work
Using MSC for test purpose specification and the consecutive test case gen-
eration as suggested in this chapter is not new and has already been imple-
mented in several academical and industrial tools like Autolink, Testcom-
poser, or ptk. Autolink and ptk support the generation of test cases for
concurrent test architectures.
Autolink [SEG+98] and Testcomposer [KJG99] support the generation of
TTCN-2 test cases either from SDL specifications guided by MSC test pur-
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poses or directly from MSC test purposes. However, both tools are only able
to generate tests for assessing pure functional requirements.
The ptk tool [BBJ+02] also generates TTCN-2 test cases from MSC test
purposes. The latest version is intended to produce TTCN-3 output as
well. Moreover, ptk is able to generate test cases which aim at testing real-
time requirements by taking non-standard time annotations in test purpose
MSCs into account. Using non-standard annotations is a disadvantage in
comparison to the approach presented in this chapter. A further deficiency
is that the generated test cases use just standard TTCN timers to assess the
real-time behaviour of the SUT. This leads to all the problems which have
already been discussed in Chapter 3. In contrast to the approach presented
in this chapter, it is in particular not possible to test real-time requirements
which span over several distributed test component.

Limitations
Generating test cases from test purpose MSCs has some limitations. For
example, in the example test purpose for the Inres protocol in Figure 4.3, it
is not perceptible that the sequence number changes for each iteration of the
loop as well as the sequence number used for acknowledgement. As a result,
a tool is not able to generate from such a test purpose MSC a test case
which reflects the alterations of the sequence number and the dependencies
between the received sequence number and the acknowledged sequence num-
ber. In principle, MSC allows to express this, but this would clutter the test
purpose MSC. Furthermore, inconclusive cases cannot be generated from a
test purpose which describes by definition just a scenario leading to a pass
verdict.
Thus, it is desirable to let a test case developer benefit from the knowledge
and experience which are contained in the transformation rules used by
the described real-time test generation tool. An appropriate pattern-based
approach for deriving TIMEDTTCN-3 test cases from test purpose MSCs is
presented as part of the next chapter.



Chapter 5

Test Patterns

In this chapter, patterns which can be used for development of tests are
presented. Since testing is usually performed against some specification,
some of those patterns may not only be useful in the test development
phase, but also in the requirements and specification development phase of
a system. Using patterns already in the initial phase of system development
allows an integrated methodology, where both, test case and implementation
development benefit from patterns.
While in the previous chapter an automated test case generation approach
was presented, patterns may be used both in a manual and in an auto-
mated test generation approach. In a manual development approach, a
developer can reuse patterns and needs not to invent the wheel twice. An
automated approach may benefit from patterns, because tools may identify
patterns automatically and provide further support for the identified pat-
tern. In fact, the transformation rules presented in the previous chapter are
already a sort of pattern. This becomes apparent, where solutions in form
of TIMEDTTCN-3 skeletons are assigned to problems in form of MSC test
purpose snippets. Thus, some aspects of automatic test case generation, e.g.
providing the correct evaluation function for a certain real-time requirement
in a test purpose, may profit from patterns.
The roots of this work have been published by the author as part of a joint
work in [NDG04]. This work was refined and extended during the partici-
pation of the author in the European Telecommunications Standards Insti-
tute (ETSI) Work Item “Patterns in Test Development” (PTD) [ETS04].
This chapter is structured as follows: First, in Section 5.1, some foundations
on patterns and their usage are given. This includes a proposal for classify-
ing test patterns and a discussion of test pattern templates. A specialised
test pattern template is presented later-on in Section 5.2. In the latter sec-
tion, Real-time Communication patterns, which have been identified by the
author, are presented. These patterns ease the specification of real-time
requirements. Then, in Section 5.3 it is shown, how these patterns relate
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to TIMEDTTCN-3 and aid real-time test generation. Finally, a summary of
this chapter and some conclusions are given.

5.1 Foundations

Patterns and a pattern language were first introduced in the context of
architecture for building houses and towns based on the combination of
known, proven solutions [AIS+77, Ale79]:

“The elements of this language are entities called patterns. Each
pattern describes a problem which occurs over and over again
in our environment, and then describes the core of the solution
to that problem, in such a way that you can use this solution a
million times over, without ever doing it the same way twice.”
(C. Alexander et al. in [AIS+77])

While these patterns where not developed with having software development
in mind, it turned out that the notion of patterns is valuable for software
engineering. [GHJV95] made object-oriented software design patterns pop-
ular. A more fundamental discussion of software patterns, which is not only
restricted to design patterns and also discusses, e.g., the development of new
patterns (pattern mining), is given in [BMR+96].
In general, patterns are regarded as elements of reusability. A pattern lan-
guage1 describes, how these elements can be combined. For developing
software, a well known primary source of reusable elements are libraries.
But libraries of predefined elements are often not flexible enough, because
they lack customizability. In contrast, patterns provide an abstract solu-
tion for a generic problem. This abstraction keeps patterns customisable.
On the other hand, patterns need to be instantiated before being usable,
which requires some more experience and effort than simply reusing a pre-
defined library. A third kind of reusable elements are frameworks, which
may be regarded as the opposite of a library, i.e. an application-dependent
infrastructure architecture which can be customised by plugging in missing
parts. Patterns —at least design patterns— may be considered as a sort of
micro framework.
Patterns can be regarded as rules of how to solve a certain problem. A
pattern consists of several parts which are described using a fixed template.
For the original patterns, C. Alexander defines in [Ale79]:

“Each pattern is a three-part rule, which expresses a relation
between a certain context, a problem, and a solution.”

1[BMR+96] suggests to use the term pattern system instead of the notion of a “lan-
guage” since it is not possible to construct software solely from patterns as the term
“language” might wrongly suggest.



5.1. Foundations 105

The number of parts of a pattern and the template used for describing a
pattern may differ with respect to the domain, for which a pattern applies.
However, a pattern usually consists —besides its name— of at least a de-
scription of a problem, it’s context and the provided solution. From now
on, only patterns of relevance for software engineering and especially testing
are regarded.
Besides supporting reuse, patterns have an additional valuable advantage:
patterns provide a common vocabulary for problem solutions. For soft-
ware engineering, this benefits not only system design, implementation and
test development but also system maintenance, since it is easier to identify
known patterns than to understand an uncommon system structure. Both
aspects of patterns, reuse and common vocabulary, allow a more efficient
construction of systems.

5.1.1 Patterns and Testing

Since the existing patterns, like software design patterns, have proven to
reduce development time and to improve maintainability [PUT+01], it is
desirable to identify patterns for the testing domain, too. Hence, test pat-
terns are considered in this thesis, in particular Real-time Communication
patterns as introduced in Section 5.2.
The intention is to use test patterns during the test development process to
solve recurring problems. Thus, test development time can be reduced and
maintenance is eased as described in the preceding section. Furthermore,
test patterns improve the comparability of test suites and reproducibility of
tests.
Since a system needs to be testable and (at least black-box) testing is per-
formed against some requirements, patterns should be used in an integrated
system development methodology. The highest benefit can be achieved by
using patterns already in the requirements capture phase. This improves
testability and allows utilisation of related test patterns during test devel-
opment. This will be shown in sections 5.2 and 5.3. Moreover, such an
integrated development approach allows even an automated generation and
implementation of test cases based on patterns which can be identified by a
tool.

5.1.2 Relationship to Other Kinds of Patterns

Before classifying different kinds of test patterns in the following sections,
test patterns need to be distinguished from other existing kinds of patterns.
A valuable source of patterns is [Hil04]. Most of the patterns mentioned
below can be found there. Note that the chosen patterns provide just a
small selection. They were chosen either because of their popularity or their
relevance for distributed systems and testing.
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Design patterns are described in [GHJV95, BMR+96]. They focus on
structural aspects of object-oriented software design by identifying
common, recurring relationships between classes and their interac-
tions.

Design pattern are described using a template. It consists of the fol-
lowing parts: name, problem, context, forces, solution, resulting context,
rationale, related patterns, known uses.

Despite of this template, the pattern description is rather informal.
Prose language is used, except for the solutions section where addition-
ally Unified Modeling Language (UML) diagrams [OMG03a, OMG03b]
are used to describe the proposed classes and their relationship.

Design patterns are abstract in the sense that they are independent
of the object-oriented language which is used to actually implement
the pattern. Nevertheless, to illustrate the implementation, usually an
example of the instantiated pattern is given by means of code excerpts
from some object-oriented programming language.

Hence, a design pattern provides just a small framework, which has
to be instantiated by coding the contained classes using an object-
oriented implementation language, and customising it by inserting the
missing parts. In contrast to real object-oriented frameworks, design
patterns are smaller and application domain independent.

SDL patterns [Gep01] are tailored to the development of SDL systems,
i.e. systems which are specified using the Specification and Descrip-
tion Language [ITU99a]. SDL patterns benefit from the formal SDL
semantics, which offers the possibility of precisely specifying how to
apply a specific pattern, under which assumptions this will be allowed,
and what properties result for the embedding context. This includes
special symbols, which are introduced for the SDL fragments of the
pattern template to distinguish the patterns itself from its context.

The SDL pattern template contains the following parts: name, version,
intent, motivation, structure, message scenario, SDL fragment, semantic
properties, refinement, cooperative usage, known uses.

Since these patterns are intended for SDL, they are language specific.
Moreover, they are specific to a particular domain, namely communi-
cation systems. Nevertheless, they abstract from a specific protocol.

Telecommunications Distributed Processing Patterns [DeB95] refer
to different stages of the development of a telecommunication system,
mainly on analysis and design.

The used pattern template consists of the parts name, context, forces,
problem, solution, resulting context, design rationale, author.
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The presented patterns are heterogeneous and vary not only with re-
spect to the development stages to which they apply but also in the
degree of abstractness and formalisms used: sometimes just prose lan-
guage is used, but sometimes also informal graphics or (pseudo) code
snippets are provided.

Similar to patterns, further kinds of reusable elements of good practise have
been published in the past. An example are idioms, i.e. language specific
code snippets as a solution for recurring problems in a particular language.
In software development, the notion of idioms has been used first in [Cop92],
where they relate to the C++ [ISO98] programming language.
Idioms and the patterns presented so far have in common that they can be
customised because they have to be instantiated. But in contrast to pat-
terns, idioms do not provide an abstract solution, but a detailed language
specific implementation. Nevertheless, idioms are application domain in-
dependent. [BMR+96] classifies idioms as a special category of patterns,
namely a low-level language-dependent pattern. In this thesis, this classifi-
cation of idioms as patterns is adopted.

5.1.3 Existing Test Patterns

Besides these patterns which relate to software analysis, design and spec-
ification, some patterns which are associated to testing have already been
identified and published:

Test design patterns are described as a part of [Bin99]. Another suit-
able term would be “object-oriented test strategy patterns”, since
those patterns describe several strategies to derive test cases for testing
object-oriented software.

The template used for test design patterns consists of the following
parts: name, intent, context, fault model, strategy (test model, test
procedure, oracle, automation), entry criteria, exit criteria, consequences,
known uses, related patterns.

Test design patterns are abstract in the sense that they describe just
an approach of how to obtain test data or test actions. They are not
related to how to specify the obtained test data or actions.

Unit Test Patterns are intended for the design and implementation of
unit tests, e.g. for the JUnit test framework [GMB04].

Several separate unit test patterns (e.g. mock objects [MFC01]), are
collected on [Obj04]. They do not constitute a pattern system and no
template is used for describing them. Some of them use code snippets
for explanation.
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Furthermore, in [Cli04], several unit test patterns are presented. They
do not make use of a template either, even though all of them share a
common format by using an informal diagram and prose text. How-
ever, they are categorised into pass/fail patterns, collection manage-
ment patterns, data driven patterns, performance patterns, process pat-
terns, simulation patterns, multithreading patterns, stress test patterns.
These patterns are abstract in the sense that they are not related to a
certain unit test framework. Indeed, they are that abstract and gen-
eral that some of them apply even to other kinds of testing, like system
tests.

In general, the unit test patterns in [Obj04, Cli04] are not as elaborated
as other kinds of patterns.

Code review patterns are collected in [Wik04]. These kind of patterns
describes patterns for organising reviews of source code which is a kind
of static tests.

The template for code review patterns is not very rigorously used.
In the most elaborated case, it consists of the following parts: name,
problem, context/forces, solution, resulting context, rationale, related pat-
terns.

Code review patterns do not apply to formal artifacts like source code,
but to management issues, i.e. they are organisational patterns. Thus,
the solutions which they provide are abstract.

Besides the above test patterns, some international standards related to
testing contain abstract solutions for recurring problems. Thus, the solutions
captured in such standards may be regarded as candidates for patterns.
As an example, the different OSI service types defined in [ISO02] are a kind
of communication pattern. A further example is the ISO/IEC standard 9646
Conformance Testing Methodology and Framework (CTMF) [ISO97b]: The
contained abstract test methods which define different test architectures can
be seen as test patterns, because they provide abstract solutions for testing
protocol entities of communicating systems. Also the concept of Protocol
Implementation eXtra Information for Testing (PIXIT) can be regarded as
a pattern to decouple test suites from hardware details. Though, since these
elements were not developed with having patterns in mind, they do, e.g.,
not use a pattern template.
In addition to international standards, numerous strategies for deriving test
cases (or test data) have been published. Prominent examples are the books
[Mye79, Bei95]. Especially the black-box test strategies in [Bei95] are al-
ready described using a uniform template which is very close to a pattern
description. Hence, it would be possible to re-write those strategies as pat-
terns, just in the same way as it is done in [Bin99].
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5.1.4 Classification of Test Patterns

In the previous section, three kinds of test patterns and several candidates
for test patterns are mentioned. Before introducing a further kind of test
patterns in Section 5.2, a classification of all the various patterns which can
be regarded as test patterns will be developed in this section.
Different areas of test development may benefit from using patterns. Thus,
for the classification of test patterns, several dimensions of test development
where patterns are applicable can be identified: the phase of test develop-
ment, the test goal and the scope of testing2. These three dimensions are
orthogonally to each other. Nevertheless, some dependencies between them
might exist. For example, a pattern for a certain test architecture is ap-
plicable for conformance testing only, but not for interoperability testing.
Furthermore, using a certain pattern during test design might suggest a
specific pattern during test evaluation.
Figure 5.1 shows the dimensions suggested for classifying test patterns. The
three dimensions and their subdivision are described in the following.
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Figure 5.1: Dimensions of Pattern Classification

Phase of test development: The dimension of the phase of test develop-
ment relates to the point in time of the test development process where
a test pattern is used. The test development process can be divided
into the following phases which are usually consecutive, but may be
iterated as part of an incremental or iterative development approach:

2The suggested classification is similar to the test classification provided in Section 2.1.
Though, the dimension of distribution has been dropped and is replaced by the test de-
velopment phase. Nevertheless, that dimension still exists, but it is often coupled to the
test scope: unit tests are usually performed locally, whereas integration and system tests
might require a distributed tester. Moreover, local testing may be regarded as a special
case of distributed testing.
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1. Testable requirements and specification: Preceding to the actual
test development, testable requirements need to be captured and
a testable design needs to be specified. This early stage can
already benefit from test patterns. Some of the patterns used
in later test phases may be related to patterns used in the re-
quirements, specification or design phases of system development.
Thus, using patterns in the early stages of system development
may ease test development in later stages.

2. Test purpose definition: The stage of identifying and captur-
ing test purposes may also be aided by patterns. When us-
ing a formalised test purpose description, e.g. Message Sequence
Charts (MSCs), patterns can be used as MSC building blocks.
Patterns for test purpose definition may be related to the re-
quirements patterns described in the previous item.

3. Test design is the next phase of test development. Since this
phase is more complex than, e.g., test purpose definition, it can
be further sub-divided according to several aspects:

(a) Test architecture: The architecture of a test system
—especially if a distributed test architecture is used— may
be complex. Nevertheless, often similar test architectures
are used. Thus, this aspect of test design benefits intensively
from patterns. Examples for such architectural test patterns
are the CTMF test methods which are mentioned in Sec-
tion 5.1.3.
Further viewpoints of architectural patterns are: distribution
(local or distributed), number of involved ports (PCOs) or
respectively test components.

(b) Test behaviour: Besides the architecture, the behaviour of a
test is an important part of test design. The development of
test behaviour may profit from patterns as well. Such pat-
terns may provide abstract solutions, but also language spe-
cific idioms. An example is guarding a test case with a timer
to guarantee an eventual termination of the test case—if the
solution is only provided as TTCN-3 code, it is an idiom, but
the essence can also be described as abstract solution which
is valid for any test language which supports timers.
Besides general behavioural test patterns, further sub-classes
of test behaviour patterns can be distinguished:

i. Communication: Test communication patterns provide
solutions for the communication between the SUT and
test components.

ii. Test coordination: Such patterns apply for distributed
testing (which might involve a test architecture provided
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by a test architecture pattern). Test coordination pat-
terns provide solutions for coordination procedures be-
tween several parallel test components, either by using a
designated (e.g. main) test component as coordinator or
via a peer-to-peer approach.

(c) Test data: A further important aspect of the test design stage
is the selection, definition and matching of test data. This
may also benefit from patterns. Some of those patterns may
be application or protocol dependent (e.g. test data patterns
applicable for Internet Protocol version 6 (IPv6) testing.)

4. Test deployment: This kind of patterns relates to making abstract
test suites executable. As already described in Section 5.1.3, the
concept of PIXIT or the usage of test suite parameters in general
are candidates for patterns in the test deployment stage.

5. Test execution: Test execution, especially when not fully auto-
mated, may also be aided by patterns, e.g. by providing guidance
to a manual tester how to perform certain test steps. Never-
theless, TTCN-3 test suites are usually executed automatically.
Therefore test execution patterns are not discussed in this thesis.

6. Test evaluation: The final phase of the testing process is the
evaluation of test results. But, in fact, the individual steps of how
to evaluate test results may have already been specified during
test design. Therefore, test evaluation patterns are usually tied
to some test design patterns. Nevertheless, the actual evaluation
is performed after test execution.

A further dimension for the classification of test patterns is the goal of
testing:

Test goal: The test goal dimensions relates to the type of test. Different
test goals may require different test patterns. In contrast to the first
dimension, there is no causal order between the particular goals, be-
cause the different test strategies are completely different from each
other. Nevertheless, e.g., non-functional testing is usually only per-
formed after an item under test has passed the functional tests. The
division of this dimension is as follows:

1. Static testing: In contrasts to all other test goals, static tests as-
sess an item under test without executing it. Mainly, two different
kinds of static testing can be distinguished:

(a) Tool based: Automated tools which assess the source code are
used. Those tools perform a semantical analysis of the con-
trol or data flow (e.g. the lint tool [Dar88]). The flaws which
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are detected by such tools may be regarded as anti-patterns.
Another application of static test tools is to check source
code formatting conventions or to calculate source code met-
rics which give a hint on the code quality.

(b) Manually: Another possibility of static testing is the man-
ual examination of the source code by humans. This is also
known as code inspection, review or walkthrough [FW90,
GG93, FLS04]. Especially the management of the examina-
tion process can be guided by patterns, e.g. those mentioned
in Section 5.1.3.

2. Structural testing: Structural test approaches have the goal to
cover the structure of the item under test during test execution
with respect to a certain criteria. In order to create test cases
which achieve this, the internal structure of the item under test
needs to be known. Therefore, structural tests are usual glass-
box tests. Structural testing can be sub-divided with respect to
the type of coverage at which the test is aimed:

(a) Control flow coverage: The goal of this type of tests is to
cover the control flow of the item under test, e.g. branch
coverage or path coverage.

(b) Data flow coverage: This type of tests aims at covering ac-
cesses to variables, i.e. the data flow.

Structural test approaches may benefit from patterns. An exam-
ple is the test design phase: the glass-box test design strategies
described in [Mye79] are candidates for glass-box test patterns.

3. Functional testing: The test goal of this type of test is to test the
item under test with respect to the functionality it should fulfil.
Functional testing is based on the specification which prescribes
the behaviour of the item under test. In contrast to structural
tests, functional tests do not require any knowledge of internals
of the item under test. Therefore, they are usually black-box
tests. However, if the item under test is instrumented to obtain
coverage measurements, functional tests have to be regarded as
grey-box tests.
The following special types of functional tests can be distin-
guished:

(a) Conformance testing: This type of test is aimed at test-
ing whether an item under test conforms to its specification
based on observable external behaviour. A lot of proven so-
lutions for this goal are known in the area of conformance
testing (e.g. [ISO97b]) and thus candidates for conformance
test patterns.
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(b) Interoperability testing: The goal of interoperability testing is
to test several implementations against each other and to ob-
serve their inter-working. Patterns for this goal may be, e.g.,
related to test architectures which are suitable for observing
the implementations and injecting or modifying messages ex-
changed between the implementations.

4. Non-functional testing: Like functional tests, non-functional test
are usually performed against some requirements. Though, non-
functional testing aims at the assessment of non-functional re-
quirements. A variety of different test goals can be related to
testing of non-functional properties. Hence, a sub-division of test
patterns for non-functional tests is appropriate, e.g.:

• Real-time tests: Real-time test patterns provide solutions for
testing hard real-time properties of discrete events, e.g. the
response time or the latency of forwarding a signal. Patterns
of this class are intensively discussed in Section 5.2.

• Performance tests: In contrast to the previous pattern kind,
performance test patterns do not deal with discrete events,
but properties of whole streams of data, e.g. the quality of a
video stream.

Many more kinds of non-functional tests which may profit from
patterns exist. Examples for further non-functional requirements
which might be subject of tests are given in Section 2.2.

The final dimension of the suggested classification of test patterns is the
scope of testing:

Test scope: The test scope describes the granularity of the item under test.
During software development, tests can be performed at different levels
of scope. Test patterns for one scope may not be suitable for a different
scope. Testing are usually performed in the following order of scopes:

1. Unit: The scope of unit testing is the smallest testable unit. As
mentioned in Section 5.1.3, patterns which ease designing and
implementing unit tests have already been identified.

2. Integration: Another kind of test patterns may fall into the class
of integration test patterns. Patterns for this scope aid developing
tests for strongly connected collections of units, i.e. sub-systems.

3. System: The whole system is the scope of system tests. System
tests are usually black-box tests, thus the large number of ab-
stract solutions for black-box tests falls also into the category of
system test patterns.
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The characteristics of the three dimensions used for the classification of
patterns differs slightly. With respect to the phase of test development, a
test pattern relates usually to exactly one phase (but may be tied to another
test pattern from another phase). But for the other dimensions, it is possible
that a pattern may be used for, e.g., all scopes of testing or for a set of test
strategies, e.g. functional and non-functional testing. Some examples will
be given in the following.

Assessment of Pattern Classification
To show that the suggested classification is applicable for test patterns, an
exemplary classification of some test patterns will be given in the following.
As a result, covered and non-covered areas in the test pattern space become
visible.
Figures 5.2–5.8 show the test pattern space which is spanned by the three
dimensions phase, goal, scope and where the considered test patterns are
located according to the suggested classification. To ease cognition which
range of each axis is covered by a pattern, the perpendicular projection of
a pattern to the coordinate planes is shown as a shaded area. If necessary,
the location of the shaded areas with respect to the axes is additionally
indicated by dashed lines.

Test design patterns as described in [Bin99] can be classified as patterns
for the test design phase. [Bin99] introduces a large variety of patterns,
thus the whole domain of test scopes is covered. Since the patterns
are intended for object-oriented systems, they make assumptions and
require knowledge of the implementation. Hence, with respect to the
test goal dimension, these patterns are classified as structural test
patterns (cf. Figure 5.2).
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Figure 5.2: Classification of Existing Test Design Patterns
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Unit test patterns as surveyed in [Obj04, Cli04] can be classified as test
patterns for the test design, test deployment, and test evaluation phase
aimed at structural coverage for testing at unit scope (cf. Figure 5.3).
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Figure 5.3: Classification of Existing Unit Test Patterns

Code review patterns as collected in [Wik04] can be classified as test
patterns for manual static tests. In principle, manual static tests may
be performed at any scope level. However, the feasible level depends
on the detailedness of the item under test: A coarse design model can
be assessed at system level, while the source code of an implementation
can be assessed reasonably only on unit or integration test level. Since
the patterns in [Wik04] are intended for source code, unit and integra-
tion test scope apply for their classification. When classifying static
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test patterns with respect to the dimension of test development phase,
it has to be taken into account that static tests are quite different
from dynamic tests. Nevertheless, for each of the phases of dynamic
testing a counterpart in static tests exists. The code review patterns
support setting up a review team and performing the actual review.
This maps to the test deployment and test execution phases (cf. Fig-
ure 5.4). However, in a more general classification, these patterns may
also be regarded as test management patterns.

In addition to the existing test patterns, some test pattern candidates are
mentioned either in Section 5.1.3 or 5.1.4. They shall also be classified in
the following.

Test methods as standardised in the Conformance Testing Methodology
and Framework [ISO97b] can be classified as patterns suitable for the
test design phase, especially the test architecture sub-class. Since they
are described in the context of conformance testing, they have to be
regarded as functional conformance test patterns with respect to the
test goal axis. The test scope is mainly system level, though, since
CTMF distinguishes between System Under Test and Implementation
Under Test , the actual implementation may be also regarded as a
sub-system, i.e. integration tests may also apply (cf. Figure 5.5).
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Figure 5.5: Classification of the Test Methods Pattern Candidate

Protocol implementation extra information for testing (PIXIT) are
also part of CTMF [ISO97b]. Thus, concerning the test goal and the
test scope axis, the same considerations as for test methods hold. How-
ever, they ease test deployment. Therefore, they are located on the
according location of the test phase axis (cf. Figure 5.6).
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Figure 5.6: Classification of the PIXIT Pattern Candidate

Most idioms, like, e.g., test case guarding timer are patterns for the
test design phase, especially test behaviour. Idioms can be useful for all
test scopes. They are intended for specifying dynamic tests and thus
apply in general for all test goals except static tests (cf. Figure 5.7).
Nevertheless, it is possible that a certain idiom relates to exactly one
test goal or scope. In this case, the covered volume in the pattern
space would reduce.
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Test coordination patterns are patterns for the test design stage, es-
pecially test behaviour, or to be more precise: the test coordination
sub-class. Such patterns may be suitable for a range of test goals,
except static tests. Moreover, e.g., real-time tests may require other
(time aware) test coordination patterns than non-time critical func-
tional tests. Since units have usually just one interface and thus re-
quire just one test component, test coordination patterns are mainly
related to system or integration scope (cf. Figure 5.8).
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Figure 5.8: Classification of the Test Coordination Pattern Candidates

Adding up the areas which are covered by the discussed patterns and pat-
tern candidates, results in the conclusion that for just a fraction of the test
pattern space, patterns have been identified, yet. In order to narrow the ex-
isting gaps, a further type of test patterns, which covers the real-time layer
of the test goal dimension, is introduced in Section 5.2.

5.1.5 Pattern Templates

Experience has shown that for the notation of patterns, a uniform template
is suitable. This eases browsing through a pattern catalogue. Furthermore, a
fixed template makes it is easier to compare patterns to each other, especially
if several patterns apply to the same context. Thus, it is desirable to use a
special template for describing test patterns.
However, when comparing the various pattern templates presented in sec-
tions 5.1.2 and 5.1.3, it becomes obvious that one template may not fit all
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Situation giving rise to a problem

Context

Problem

Solution

Set of forces repeatedly arising in the context

Configuration to balance the forces

Named Pattern

Figure 5.9: Pattern Template Scheme (Slightly modified from [BMR+96])

kinds of patterns. Even when restricting to test patterns, a look at the
template for the test design patterns surveyed in Section 5.1.3 shows that a
very specialised template is used. While that pattern template is reasonable
for that particular purpose, it would be very impractical to describe other
kinds of test patterns with that template—especially when keeping the huge
test pattern space developed in Section 5.1.4 in mind. (The heterogeneity
of the pattern space —and thus of the required pattern templates— stems
mainly from the dimension of the phase of test development, because the
individual stages differ significantly.)
Nevertheless, it is possible to consider the common essence of pattern tem-
plates. Based on this, specialised variants of pattern templates can be de-
rived for the different kinds of test patterns.
In [BMR+96], the core of the common pattern templates is distilled to look
like in Figure 5.9. Accordingly, the essence of a pattern template can be
summarised as follows:

• As previously mentioned, the pattern should have a name, which com-
municates the core of the pattern. An example is: “Coordinate parallel
test components”.

• The context describes the situation in which the problem solved by
the pattern occurs. It is important to be aware that the context itself
is not already the problem, but may lead to the problem. The context
might also refer to another pattern, from which the context might
result. An example is: “Distributed test architecture with more than
two test components.”

• The problem describes a problem which occurs repeatedly in the given
context. An example is: “Parallel test components shall synchronise
their behaviour.” Furthermore, so called forces are usually listed in the
problem description. Such forces refer to any additional requirements
or constraints which have to be challenged when solving that problem.
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Such forces may even be contradictory. Examples for forces are: “The
number of coordination messages shall be minimal to reduce bottle-
necks.” or “The existing generic distributed test architecture shall not
be modified.”

• The solution provides the abstract solution, which is able to balance
the forces associated to the problem. An example is: “If all existing
test components have a connection to the MTC, just use the MTC as a
centralised coordinator. If bottlenecks shall be reduced, introduce ad-
ditional coordination connections only between the components which
are to be synchronised.”

It makes sense to adhere to this scheme for all of the different kinds of test
patterns, because everyone who once used patterns in other domains will
immediately feel familiar inside a test pattern catalogue, too. A concrete
example of a template for a specialised kind of test pattern will be given in
Section 5.2.1.

5.1.6 Usage of Patterns

After a test pattern has been identified (through “pattern mining”) it can
be written down using a pattern template. Eventually, this will result in
a pattern catalogue, which can be sorted with respect to the test pattern
classification proposed in Section 5.1.4. This enables a test developer to
select and instantiate a pattern from the test pattern catalogue. For finding
and instantiating the right pattern, the following steps (taken and modified
from [BMR+96]) can be performed:

1. Specify the problem you want to solve. If the general problem has
several aspects, divide them into sub-problems. Identify the forces
which constrain your problem.

2. Select a pattern category from the pattern classification which applies
to your problem.

3. Search the pattern catalogue in the category selected in Step 2.

4. Compare the problem descriptions of the found patterns. Which one
matches best your problem and balances your forces best?

5. (a) If the selected pattern provides several variants as solution, select
the one which implements best the solution for your problem.

(b) If you could not find a suitable pattern in steps 3 or 4, go back
to Step 2 and select another, probably more general, pattern cat-
egory. If even that does not yield a satisfactory result, abort
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searching for provided patterns. Instead, solve your problem
without using patterns or try to mine a new pattern on your
own.

6. Instantiate the selected pattern. The actual way of instantiation de-
pends on the pattern itself. Most of the test patterns will probably
either be idioms or provide an example using TTCN-3. Thus, imple-
menting a pattern using TTCN-3 should be straightforward.

After this general considerations on test patterns, this thesis will focus in
the remaining sections of this chapter on test patterns which are suitable
for testing real-time requirements. It will also be explained, how system
and test development can be integrated by associating patterns of different
development stages to each other.

5.2 Real-Time Communication Patterns

In the previous section, test patterns and their general foundations have been
discussed. In this section, test patterns will be discussed in the context of
real-time test specification and implementation using TIMEDTTCN-3.
Even though it is possible to generate TIMEDTTCN-3 automatically from
graphical test purposes as demonstrated in Chapter 4, pattern support for
TIMEDTTCN-3 is beneficial. The use of TIMEDTTCN-3 can be facilitated
and harmonised by providing a common set of test evaluation functions.
This would make test results more comparable and avoids misinterpreta-
tions due to the use of different or erroneous evaluation functions. Thus, the
key issue is the identification of commonly applicable evaluation functions
for TIMEDTTCN-3 test cases. As described in Chapter 3, such functions are
used to evaluate relations among time stamps of events, which are observed
during a test run. An evaluation function is related to the number of inter-
faces of the System Under Test (SUT), the number of time stamps to be
considered and the number of relations among these time stamps. It would
be necessary to provide an infinite set of evaluation functions to cover all
cases. This is not possible and, therefore, a pattern-based approach is used
to identify evaluation functions for the most common cases.
To achieve this, Real-time Communication patterns (RTC-patterns) for ex-
pressing real-time requirements are introduced. RTC-patterns are used
to describe real-time requirements in form of time relations among com-
munication operations at the interfaces of a communication system. For
each of these patterns, evaluation functions can then be provided. By
using RTC-patterns during test design or by scanning test specifications
for RTC-patterns, it is possible to use predefined evaluation functions in
TIMEDTTCN-3 test descriptions.
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Figure 5.10: Classification of the RTC-patterns

With respect to the pattern classification in Section 5.1.4, RTC-patterns are
patterns for real-time tests. Most of the patterns are appropriate for testing
at more than one interface, thus the test scope is mainly at integration and
system level. Concerning the test development phases, several phases are
covered as shown in Figure 5.10: testable requirements and thus also test
purpose definition are supported as well as test evaluation. Test behaviour
is also affected, as far as the generation of time stamps for communication
events is concerned. In comparison to the pattern spaces which are depicted
in Section 5.1.4, it becomes visible that RTC-patterns cover completely new
domains of the pattern space.
Even though the domain of testing motivated the work on RTC-patterns,
these patterns may be of general interest for real-time system develop-
ment, because RTC-patterns describe requirements, namely real-time re-
quirements. Relating predefined test evaluation functions is just a special
application of these patterns. Therefore, RTC-patterns are presented in
the remainder of this section independent of the testing domain. After-
wards, their application to testing is explained by providing appropriate
test evaluation functions. In general, RTC-patterns abstract from a certain
test specification language, but as an example implementation, Section 5.3
shows how they can be instantiated using TIMEDTTCN-3.
In the following, Message Sequence Charts (MSCs) are used to present
RTC-patterns for the most common hard real-time requirements [ATM99a,
IET90, IET91, IET02]. Since real-time requirements are always related to
some functional behaviour on which they are imposed, it is not possible
to provide patterns for pure real-time requirements. Therefore, the RTC-
patterns contain not only real-time constraints, but also communication
events on which the real-time requirements are imposed.
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In order to ease specification and testing of distributed real-time systems, it
is the intention to provide patterns for testable real-time requirements only.
In general, testable requirements can be obtained if the involved events of
the system can be observed and stimulated. Thus, it is assumed that the
system for which the requirements are specified has appropriate interfaces,
i.e. Points of Control and Observation (PCOs).
The RTC-patterns are presented as system level MSCs, i.e. each PCO is
represented as one MSC instance. The given MSCs make intensively use
of the abstraction mechanisms explained in Section 2.3, e.g., the system is
described by a single decomposed instance with name System. The internal
structure of the system is abstracted by omitting in the System instance
header the actual reference to an MSC that decomposes the system be-
haviour. This way, a black-box view of the system is obtained.
The most common real-time requirements are related to delay, throughput,
periodic events and jitter respectively. Basically, those requirements de-
scribe time relations between one send and one receive event, or the repeated
occurrence of a send and a receive event. Depending on the number of PCOs
of a system, the RTC-pattern for a certain requirement may look different,
i.e. several pattern variants may exist for describing the same real-time re-
quirement in different system configurations. In this thesis, RTC-patterns
for systems with one or two PCOs only are provided. They will be listed in
the pattern catalogue starting in Section 5.2.2. Based on them, patterns for
more PCOs, e.g. for multi-cast, may be derived.
Note that each pattern is described in a self-contained manner. Since some
remarks apply for several patterns, they are listed several times. Redun-
dancy in the pattern catalogue is hence by intention.

5.2.1 Real-Time Communication Pattern Template

Before the actual RTC-patterns are described in Section 5.2.2, a template,
which is used to describe these patterns, is presented. It is derived from a
test pattern template which has been developed by the author as part of the
ETSI PTD Work Item [ETS04].
The RTC-pattern template resembles the scheme discussed in Section 5.1.5.
For each element of the template, a short description is given. The context
of all RTC-patterns is “real-time requirements at integration and system
scope” as shown in Figure 5.10. This information is not repeated each time
in the context part of the RTC-pattern template. (However, for a more
general pattern template, this classification of the current pattern might be
a valuable constituent of the context part.)
To ease browsing the pattern catalogue, the pattern template is headed
with two horizontal lines surrounding the pattern name. Furthermore, each
pattern is started on a seperate page.
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Name: The name of the pattern. One or just a few words. If several names
for the pattern exist, they shall also be listed here.

Intent: A short (one or two sentences) summary of the pattern, i.e. a de-
scription of the problem solved by the pattern, but possibly also the
underlying principle of the solution.

Context: The context in which this pattern is applicable, e.g. any con-
ditions which have to be fulfilled before the pattern can be applied.
For RTC-patterns, the context is mainly described by an MSC which
specifies the involved instances and the required message flow, i.e. the
functional behaviour in which an RTC-pattern applies. To provide an
abstract description of the context, MSC constructs like decomposed
instances and MSC references are used.

Problem: A description and a short discussion of the problem which is
actually solved by the pattern.

Roles/Parameters: An enumeration of the different roles of participants
involved in the pattern. These participants and further values may be
parameters of the provided solution (and also already of the context).

Solution: The detailed description of the abstract solution, i.e. the general
idea of the solution as well as any guidelines of how to implement the
pattern. For RTC-patterns, the most important element of this part
is an MSC which is provided to show where time constraints, i.e. the
actual real-time requirements have to be applied. For providing an
abstract solution, the same MSC abstraction mechanisms as already
used for the context description are applied. Note that test evaluation
functions, which may be related to an RTC-pattern, are not provided
in this item of the pattern template. They are discussed in a later
section. However, in a pure TIMEDTTCN-3 test pattern catalogue, it
might be reasonable to provide them as part of the solution item.

Related patterns: Relationship of this pattern to other patterns: Either
other patterns which may apply in the same context and provide a
different solution but as well patterns which might apply afterwards
due to the instantiation of the current pattern.
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5.2.2 Pattern Catalogue

The RTC-pattern catalogue consists of patterns for describing three different
kinds of real-time requirements: Requirements on delays, throughput, and
periodic events.

Patterns for Delays
The term delay is often used as an umbrella term for both latency and
response time [IET90], since both differ only in the number of PCOs which
are involved in the requirement. Hence, patterns for both types of real-time
requirements are given in this section.
First, the Latency pattern is presented, afterwards two different response
time patterns: Response Time for a response time requirement on a system
and Response Time PCO for a response time requirement on a system’s
environment.

Latency

Intent: Impose a latency real-time requirement on a system forwarding a
message from one interface to another.

Context: A system forwards a message from one interface to another.

PCO1
System

decomposed
PCO2

m1

furtherEvents
m1

msc LatencyPatternContext

Problem: A latency real-time requirement shall be imposed on a system
forwarding a message from one interface to another. Latency describes
the delay which is introduced during the transmission of a signal by
a component (the system), which is responsible for forwarding this
signal [IET91].

The allowed latency between sending message m1 via PCO1 and re-
ceiving it at PCO2 shall be between t1 and t2 time units. The delay
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may be introduced by some further events that may include communi-
cation with the system environment (indicated by the MSC reference
furtherEvents), the transmission times for message m1, and additional
computations inside the system (indicated by the decomposed key-
word in the heading of the System instance).

Note that even though the same message name is used in this pattern
for both transmissions, the actual contents of the forwarded message
may differ due to changes introduced by the system, e.g. updated hop
counters or processing of the actual payload.

Roles/Parameters:

PCO1: stimulating interface
PCO2: observing interface
m1: stimulus which is forwarded
t1, t2: lower and upper bound for latency real-time constraint

Solution: Add a relative time constraint (t1, t2) to the two events of sending
message m1 at PCO1 and receiving message m1 at PCO2.

PCO1
System

decomposed
PCO2

m1

(t1, t2) furtherEvents
m1

msc LatencyPattern

Related patterns: Throughput Two PCO usually refers to a Latency pat-
tern. Other delay patterns which, however, involve just one interface
are Response Time and Response Time PCO.
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Response Time

Intent: Impose a response time requirement on a system processing some
data.

Context: A system answers a request on the same interface.

PCO System
decomposed

m1

furtherEvents
m2

msc ResponseTimePatternContext

Problem: A response time real-time requirement shall be imposed on a
system answering a request.

Response time is a delay requirement where the same PCO is used for
sending a message and receiving the corresponding answer. In con-
trast to the Latency pattern, the messages constrained in the response
time pattern usually differ significantly, e.g. request (message m1) and
response (message m2) in a client-server system. The response time
shall be t1 and t2 time units between sending message m1 and receiv-
ing message m2. The delay is usually introduced due to the behaviour
referred to by the MSC reference furtherEvents.

Roles/Parameters:

PCO: stimulating & observing interface
m1: request
m2: answer
t1, t2: lower and upper bound for response time real-time

constraint
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Solution: Add a relative time constraint (t1, t2) to the two events of sending
message m1 and receiving message m2 at PCO.

PCO System
decomposed

(t1, t2)

m1

furtherEvents
m2

msc ResponseTimePattern

Related patterns: A variant of this pattern is Response Time PCO. An-
other delay pattern is Latency. The Throughput One PCO pattern
may refer to this pattern.
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Response Time PCO

Intent: Impose a response time requirement on the environment of a sys-
tem.

Context: A system requests an answer from the environment.

PCO System
decomposed

m1

furtherEvents
m2

msc ResponseTimePcoPatternContext

Problem: A response time real-time requirement shall be imposed on the
environment of a system.

Response time is a delay requirement where the same interface is used
for sending a message and receiving the corresponding answer. In
contrast to the Response Time pattern, this pattern describes a re-
quirement or assumption for the system environment or tester. This
is necessary if a timely behaviour of the environment is needed by the
system to fulfil some other requirements. The response time of the
system’s environment shall be t1 and t2 time units between receiving
message m1 and sending message m2. The delay is usually introduced
by the environment due to the behaviour referred to by the MSC ref-
erence furtherEvents.

Roles/Parameters:

PCO: observing & replying interface
m1: observed request from system
m2: reply from environment
t1, t2: lower and upper bound for response time real-time

constraint
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Solution: Add a relative time constraint (t1, t2) to the two events of re-
ceiving message m1 and sending message m2 at PCO.

PCO System
decomposed

m1

(t1, t2) furtherEvents
m2

msc ResponseTimePcoPattern

Related patterns: A variant of this pattern is Response Time. Another
delay pattern is Latency. The Throughput One PCO pattern may refer
to this pattern.
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Throughput Patterns
In this section, two different patterns are provided: Throughput One PCO
and Throughput Two PCO. Both patterns involve repeated behaviour, which
can be expressed in MSC by using loop inline expressions. Thus, the patterns
of this section make extensively use of the MSC loop construct.

Throughput One PCO

Intent: Impose a throughput real-time requirement on messages exchanged
via one interface of a system.

Context: A system exchanges repeatedly the same set of messages with
the environment via one interface. The repetition can be subdivided
into a preamble, into a message exchange based on either the Response
Time or Response Time PCO pattern, and into a postamble.

PCO
System

decomposed

loopedPreamble

ResponseTimePattern

loopedPostamble

loop <n>

msc ThroughputOnePcoPatternContext

The loop inline expression includes the references loopedPreamble, Re-
sponseTimePattern, and loopedPostamble. Thus, additional behaviour,
which precedes or follows the response pattern, may be contained in
the MSC references loopedPreamble and loopedPostamble.
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ResponseTimePattern refers to RTC-patterns Response Time or Re-
sponse Time PCO. Though, the contained response time patterns
defines usually just the functional behaviour, which is part of the
throughput requirement. Thus, possible expansions of the Respon-
seTimePattern reference yield one of the following MSCs:

PCO System
decomposed

loopedPreamble
m1

furtherEvents
m2

loopedPostamble

loop <n>

msc ThroughputResponseTimeContext

PCO System
decomposed

loopedPreamble
m1

furtherEvents
m2

loopedPostamble

loop <n>

msc ThroughputResponseTimePcoContext

Problem: A throughput real-time requirement shall be imposed on mes-
sages repeatedly exchanged via one interface of a system.

In contrast to periodic or delay-based real-time requirements, through-
put requirements consider the system performance over a longer du-
ration, not just for a single set of events. This means, throughput
constrains the number of messages per time that a system has to de-
liver or to process repeatedly [IET90].

Roles/Parameters:

PCO: observing & stimulating interface
n: number of repetitions
t1, t2: lower and upper bound for all n repetitions of the loop

for which the throughput real-time requirment must
hold

Thus, the actual throughput TP imposed by this pattern is within the
interval

(

n
t2
, nt1

)

.
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Solution: Add a relative time constraint (t1, t2) to the first and last event
of the repetitive behaviour, i.e. the top and the bottom of the MSC
loop inline expression.

PCO
System

decomposed

(t1,t2)
loopedPreamble

ResponseTimePattern

loopedPostamble

loop <n>

msc ThroughputOnePcoPattern

The given throughput pattern constrains a throughput TP to be n
t2
<

TP < n
t1

events per time unit. Those “events” consist typically of a
set of events, in particular such according to one of the response time
patterns presented before.

Note that even if a throughput requirement is fulfilled, this does not
necessarily imply that all response time requirements are fulfilled for
each of the loop’s iteration (e.g. due to bursty behaviour and buffers
inside the system). Thus, when inserting a response time pattern
into the throughput pattern, it has to be considered whether only the
functional behaviour of a response time pattern is desired or also an
additional real-time constraint. In the first case, the delay pattern has
to be instantiated with the time interval [0, ∞) which is equivalent to
removing the real-time constraint from the response time pattern. In
the latter case, an additional requirement for periodic events and their
jitter is obtained.

Related patterns: A variant of this pattern is Throughput Two PCO which
is suitable for a throughput which involves two interfaces. The re-
sponse time patterns Response Time or Response Time PCO are ref-
erenced in this pattern. Patterns for periodic events have the same
context, since they involve also repeated behaviour, however, they put
a real-time constraint on each single occurrence of a set of events.
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Throughput Two PCO

Intent: Impose a throughput real-time requirement on a system forwarding
messages repeatedly from one interface to another.

Context: A system forwards repeatedly messages from one interface to an-
other. The repetition can be subdivided into a preamble, into message
forwarding based on the Latency pattern, and into a postamble.

PCO1
System

decomposed
PCO2

loopedPreamble

LatencyPattern

loopedPostamble

loop <n>

msc ThroughputTwoPcoPatternContext

The loop inline expression includes the references loopedPreamble, La-
tencyPattern, and loopedPostamble. Thus, additional behaviour, which
precedes or follows the latency pattern, may be contained in the MSC
references loopedPreamble and loopedPostamble. Usually, the con-
tained latency pattern defines just the functional behaviour, which
is part of the throughput requirement. Thus, possible expansions of
the LatencyPattern reference yield the following MSC:

PCO1
System

decomposed
PCO2

loopedPreamble
m1

furtherEvents
m1

loopedPostamble

loop <n>

msc ThroughputLatencyContext
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Problem: A throughput real-time requirement shall be imposed on a sys-
tem forwarding messages repeatedly from one interface to another.

In contrast to periodic or delay-based real-time requirements, through-
put requirements consider the system performance over a longer du-
ration, not just for a single set of events. This means, throughput
constrains the number of messages per time that a system has to de-
liver or to process repeatedly [IET90].

Roles/Parameters:

PCO1: stimulating interface
PCO2: observing interface
n: number of repetitions
t1, t2: lower and upper bound for all n repetitions of the loop

for which the throughput real-time requirement must
hold

Thus, the actual throughput TP imposed by this pattern is within the
interval

(

n
t2
, nt1

)

.

Solution: Add a relative time constraint (t1, t2) to the first and last event
of the repetitive behaviour, i.e. the top and the bottom of the MSC
loop inline expression.

PCO1
System

decomposed
PCO2

(t1,t2)
loopedPreamble

LatencyPattern

loopedPostamble

loop <n>

msc ThroughputTwoPcoPattern

The given throughput pattern constrains a throughput TP to be n
t2
<

TP < n
t1

events per time unit. Those “events” consist typically of
a set of events, in particular such according to the Latency pattern
presented before.

Note that even if a throughput requirement is fulfilled, this does not
necessarily imply that all latency requirements are fulfilled for each of
the loop’s iteration (e.g. due to bursty behaviour and buffers inside the
system). Thus, when inserting a latency pattern into the throughput
pattern, it has to be considered whether only the functional behaviour
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of the latency pattern is desired or also the additional real-time con-
straint. In the first case, the latency pattern has to be instantiated
with the time interval [0, ∞) which is equivalent to removing the real-
time constraint from the response time pattern. In the latter case, a
requirement for periodic events and their jitter is obtained.

Related patterns: A variant of this pattern is Throughput One PCO which
is suitable for a throughput which involves just one interface. The La-
tency pattern is referenced in this pattern. Patterns for periodic events
have the same context, since they involve also repeated behaviour,
however, they put a real-time constraint on each single occurrence of
a set of events.
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Patterns for Periodic Events
In contrast to throughput requirements, requirements for periodic events
have to hold for each single execution of a periodic event. Like for the
throughput requirement, iteration of events can be obtained by using MSC
loop inline expressions—but for periodic requirements, the time constraint
is contained inside the loop. Depending on the numbers of involved PCOs,
several patterns are possible. In the following, the most common cases are
listed.

Periodic Response Time and Jitter

Intent: Impose a periodic response time (and thus jitter) real-time require-
ment on messages exchanged via one interface of a system.

Context: A system exchanges repeatedly the same set of messages with
the environment via one interface. The repetition can be subdivided
into a preamble, into a message exchange based on either the Response
Time or Response Time PCO pattern, and a postamble.

PCO
System

decomposed

loopedPreamble

ResponseTimePattern

loopedPostamble

loop

msc PeriodicResponseTimePatternContext

The loop inline expression includes the references loopedPreamble, Re-
sponseTimePattern, and loopedPostamble. Thus, additional behaviour,
which precedes or follows the response pattern, may be contained in
the MSC references loopedPreamble and loopedPostamble. Response-
TimePattern refers to one of the RTC-patterns Response Time or Re-
sponse Time PCO.
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With respect to the context, just the functional behaviour of the con-
tained response time patterns matters. Though, as shown in the solu-
tion below, the non-functional real-time requirement of the response
time pattern is relevant for the periodic response time and jitter re-
quirement. Thus, possible expansions of the ResponseTimePattern ref-
erence yield one of the following MSCs as context:

PCO System
decomposed

loopedPreamble
m1

furtherEvents
m2

loopedPostamble

loop

msc PeriodicResponseTimeContext

PCO System
decomposed

loopedPreamble
m1

furtherEvents
m2

loopedPostamble

loop

msc PeriodicResponseTimePcoContext

Problem: A periodic response time or jitter real-time requirement shall
be imposed on messages repeatedly exchanged via one interface of a
system.

In contrast to throughput real-time requirements, Periodic Response
Time and Jitter real-time requirements must hold for each repetition
of the periodic behaviour.

Roles/Parameters:

PCO: observing & stimulating interface
t1, t2: lower and upper bound for response time and thus

jitter
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Solution: Add a relative time constraint (t1, t2) to the two events of send-
ing message m1 and receiving message m2 at PCO (shown in MSC
PeriodicResponseTimePattern) or respectively to the two events of re-
ceiving message m1 and sending message m2 at PCO (shown in MSC
PeriodicResponseTimePcoPattern).

PCO System
decomposed

loopedPreamble

(t1, t2)

m1

furtherEvents
m2

loopedPostamble

loop

msc PeriodicResponseTimePattern

PCO System
decomposed

loopedPreamble
m1

(t1, t2) furtherEvents
m2

loopedPostamble

loop

msc PeriodicResponseTimePcoPattern

The above MSCs can also be interpreted as response time jitter spec-
ifications. Response time jitter describes the variation of the delay
during repetition. Note that several interpretations of “jitter” exist
[IET02]. Here, the following definition is used: Ji = Di −D, where D
is the ideal (target) response time, Di the actual response time of the
ith pair of events and thus Ji the jitter in the ith repetition. Hence, a
response time jitter requirement for the overall sequence of response
times is expressed by the following inequation: ∀i : J− < Ji < J+,
where J− is the maximal allowed deviation below and J+ the maximal
allowed deviation above the target response time D.

As a result, the above MSCs express a target response time D, for
which t1 < D < t2 holds, and a response time jitter requirement with
J− = t1 −D and J+ = t2 −D. This means, the interval (t1, t2) could
alternatively be written as (D + J−, D + J+).

Related patterns: A variant of this pattern is Periodic Latency and Jitter
which is suitable for expressing a jitter of a periodic latency require-
ment. The response time patterns Response Time or Response Time
PCO are referenced in this pattern. The pattern Throughput One
PCO has the same context, since it involves also repeated behaviour.
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Periodic Latency and Jitter

Intent: Impose a periodic latency (and thus jitter) real-time requirement
on a system forwarding messages from one interface to another.

Context: A system forwards repeatedly the same message from one inter-
face to another. The repetition can be subdivided into a preamble,
into the actual message forwarding, and a postamble.

PCO1
System

decomposed
PCO2

loopedPreamble
m1

furtherEvents
m1

loopedPostamble

loop

msc PeriodicLatencyContext

The loop inline expression includes the references loopedPreamble and
loopedPostamble. Thus, additional behaviour, which precedes or fol-
lows the message forwarding, may be contained in the MSC references
loopedPreamble and loopedPostamble.

Problem: A periodic latency or jitter real-time requirement shall be im-
posed on a system forwarding messages repeatedly from one interface
to another.

In contrast to throughput real-time requirements, Periodic Latency
and Jitter real-time requirements must hold for each repetition of the
periodic behaviour.

Roles/Parameters:

PCO1: stimulating interface
PCO2: observing interface
m1: stimulus which is forwarded
t1, t2: lower and upper bound for latency and thus jitter
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Solution: Add a relative time constraint (t1, t2) to the two events of sending
message m1 at PCO1 and receiving message m1 at PCO2.

PCO1
System

decomposed
PCO2

loopedPreamble

(t1, t2)

m1

furtherEvents
m1

loopedPostamble

loop

msc PeriodicLatencyPattern

The above MSC can also be interpreted as latency jitter specification.
Latency jitter describes the variation of the latency during repetition.
Note that several interpretations of “jitter” exist [IET02]. Here, the
following definition is used: Ji = Di−D, where D is the ideal (target)
latency, Di the actual latency of the ith pair of events and thus Ji
the jitter in the ith repetition. Hence, a latency jitter requirement for
the overall sequence of delays is expressed by the following inequation:
∀i : J− < Ji < J+, where J− is the maximal allowed deviation below
and J+ the maximal allowed deviation above the target latency D.

As a result, the above MSC expresses a target latency D, for which
t1 < D < t2 holds, and a latency jitter requirement with J− = t1 −D
and J+ = t2 −D. This means, the interval (t1, t2) could alternatively
be written as (D + J−, D + J+).

Related patterns: A variant of this pattern is Periodic Response Time
and Jitter which is suitable for expressing a jitter of a periodic response
time requirement. The Latency pattern is the essence of this pattern.
The pattern Throughput Two PCO has the same context, since it
involves also repeated behaviour.
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Periodic Stimulus and Jitter

Intent: Impose a frequency with an allowed jitter on a periodic stimulus
sent to one interface of a system.

Context: A system is repeatedly stimulated by the same message via one
interface. The repetition can be subdivided into a preamble, the stim-
ulus, and a postamble.

PCO
System

decomposed

loopedPreamble
m1

loopedPostamble

loop

msc PeriodicStimulusPatternContext

The loop inline expression includes the references loopedPreamble and
loopedPostamble which may contain additional behaviour, which pre-
cedes or follows the stimulating sending of message m1.

Problem: A frequency with an allowed jitter shall be imposed on messages
repeatedly stimulating a system via one interface.

Roles/Parameters:

PCO: stimulating interface
m1: stimulus
t: period of the mean target frequency
t1, t2: lower and upper bound for period of actual frequency

Alternatively, (t1,t2) can be written as (t+J−, t+J+), where J− is the
maximum deviation below the target period and J+ is the maximum
deviation above.
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Solution: Add a periodic time constraint (t1,t2)+t to the event of sending
the stimulating message m1.

PCO
System

decomposed

loopedPreamble
(t1,t2)+t

m1

loopedPostamble

loop

msc PeriodicStimulusPattern

This MSC specifies a periodic sending of message m1 to the system.
The requested periodicity t is specified as an additional parameter of
the time interval.

Since standard MSC does not allow to attach time constraints to a pair
of events which spans over adjacent repetitions of a loop, the provided
solution uses an MSC extension which has been suggested in [Neu00].

Likewise to the Periodic Response Time and Jitter pattern, this pat-
tern specifies also a jitter for the periodicity (and thus of the fre-
quency). Periodicity jitter describes the variation of the periodicity
during repetition. Note that several interpretations of “jitter” exist
[IET02]. Here, the following definition is used: Ji = Ti − t, where t
is the ideal (target) period, Ti the actual period between the ith and
(i+ 1)th iteration and thus Ji the jitter in the ith iteration.

Hence, a periodicity jitter requirement for the all iterations is expressed
by the following inequation: ∀i : J− < Ji < J+, where J− is the max-
imal allowed deviation below and J+ the maximal allowed deviation
above the target period t.

As a result, the given MSC expresses a target period t, for which
t1 < t < t2 holds, and a periodicity jitter requirement with J− = t1− t
and J+ = t2 − t. This means, the interval (t1, t2) could alternatively
be written as (t+ J−, t+ J+).

Related patterns: A variant of this pattern is Periodic Response and Jit-
ter which is suitable for expressing a jitter of a periodic response re-
quirement.
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Periodic Response and Jitter

Intent: Impose a frequency with an allowed jitter on a periodic response of
a system which is observed at one interface.

Context: A system sends repeatedly the same message via one interface.
The repetition can be subdivided into a preamble, the actual response,
and a postamble.

PCO
System

decomposed

loopedPreamble
m1

loopedPostamble

loop

msc PeriodicResponsePatternContext

The loop inline expression includes the references loopedPreamble and
loopedPostamble which may contain additional behaviour, which pre-
cedes or follows the reception of message m1.

Problem: A frequency with an allowed jitter shall be imposed on messages
sent repeatedly by a system via one interface.

Roles/Parameters:

PCO: observing interface
m1: response of system
t: period of the mean target frequency
t1, t2: lower and upper bound for period of actual frequency

Alternatively, (t1,t2) can be written as (t+J−, t+J+), where J− is the
maximum deviation below the target period and J+ is the maximum
deviation above.
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Solution: Add a periodic time constraint (t1,t2)+t to the event of receiving
the response m1.

This is depicted in the MSC below. It specifies a periodic reception of
message m1 from the system. The requested periodicity t is specified
as an additional parameter of the time interval.

PCO
System

decomposed

loopedPreamble
m1

(t1,t2)+t

loopedPostamble

loop

msc PeriodicResponsePattern

Since standard MSC does not allow to attach time constraints to a pair
of events which spans over adjacent repetitions of a loop, the provided
solution uses an MSC extension which has been suggested in [Neu00].

Like all patterns for periodic events in this section, this pattern speci-
fies also a jitter for the periodicity (and thus of the frequency). Period-
icity jitter describes the variation of the periodicity during repetition.
Note that several interpretations of “jitter” exist [IET02]. Here, the
following definition is used: Ji = Ti − t, where t is the ideal (target)
period, Ti the actual period between the ith and (i+ 1)th iteration and
thus Ji the jitter in the ith iteration.

Hence, a periodicity jitter requirement for the all iterations is expressed
by the following inequation: ∀i : J− < Ji < J+, where J− is the max-
imal allowed deviation below and J+ the maximal allowed deviation
above the target period t.

As a result, the given MSC expresses a target period t, for which
t1 < t < t2 holds, and a periodicity jitter requirement with J− = t1− t
and J+ = t2 − t. This means, the interval (t1, t2) could alternatively
be written as (t+ J−, t+ J+).

Related patterns: A variant of this pattern is Periodic Stimulus and Jitter
which is suitable for expressing a jitter of a periodic stimulus require-
ment.
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5.2.3 Pattern Instantiation

So far, the RTC-patterns themselves have been presented. In order to use
them, the patterns need to be instantiated. In contrast to, e.g., design
patterns which need to be instantiated informally by translating an object-
oriented design into source code of an implementation language, the formal
semantics of MSC allows to formalise the instantiation of MSC-based pat-
terns. For this, the RTC-patterns have to be parameterised with respect
to instance names, messages names, time intervals, loop boundaries, and
references. While this is possible for most of its elements, the current MSC
standard [ITU99b] does not allow to pass reference names and interval types
as MSC parameters. Since it is not possible to parameterise all required el-
ements of an MSC, an informal instantiation approach is suggested in this
thesis. Moreover, this avoids cluttering up the MSCs of an RTC-pattern
with formal parameter declarations.
Therefore, RTC-pattern instantiation is usually performed by copying the
MSC given in the solution part of the pattern and pasting it into the MSC,
which provides the context. Finally, the copied pattern can be modified
according to the actual context. The modifications which are necessary
are simple textual replacements of instance names, messages names, time
intervals, and loop boundaries for loop inline expressions. References may
either be expanded or just renamed.
The RTC-patterns which were presented use open time intervals in the MSCs
for specifying real-time constraints. Since MSC allows an arbitrary combi-
nation of open and closed time interval boundaries, it is also valid for all
of the presented RTC-patterns to adapt the interval boundaries as suitable.
Thus, where given in the pattern template, corresponding inequations need
to be modified as well by changing a < to ≤.
As the Related patterns entries of the presented RTC-patterns suggest, RTC-
patterns are closely linked to each other, i.e. they form a system of patterns
(a pattern language). However, the Related patterns section describes the
relationship of patterns just in an informal manner. A formal description
of the pattern relationship is given by the MSC references, which refer to
other RTC-patterns. These references determine how RTC-patterns can be
composed. In general, composition of patterns is possible if the patterns do
not overlap or as long as a pattern is fully contained in another pattern.

5.3 Application to Testing

In this section, it shall be demonstrated how RTC-patterns can be used
for TIMEDTTCN-3 test development. First, it is described how to accom-
pany RTC-patterns with TIMEDTTCN-3 code. Then, the application of this
approach is demonstrated by providing an example for the Inres protocol.
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5.3.1 Applying RTC-Patterns to TIMEDTTCN-3

The intention of RTC-patterns is to utilise them for real-time test specifi-
cation and evaluation. This can be achieved by providing for each of these
patterns suitable code fragments of a test language to generate and evalu-
ate time stamps. Hence, tests can be developed either constructively from
scratch by composing MSC test purposes from RTC-patterns or analytically
by scanning existing test purposes for RTC-patterns. The corresponding test
case can be easily derived due to the relationship between TIMEDTTCN-3
code and the RTC-patterns contained in a test purpose MSC. Figure 5.11
depicts the two possible usages of RTC-patterns. In either case, predefined
evaluation functions and matching code skeletons for time stamp genera-
tion are provided by the RTC-pattern. Thus, it is guaranteed, that time
stamp generation and evaluation match. Both usages of RTC-patterns may
be supported by tools. In particular, a test generation tool may be guided
by RTC-patterns to create and evaluate times stamps in the right way.
To gain full benefit of RTC-patterns for real-time testing, they have to be
accompanied with TIMEDTTCN-3 code as an additional item of the pattern
solution part. In this thesis, this is not shown for all of the presented RTC-
patterns. Instead, just examples for the Latency and Throughput RTC-
patterns are presented to give an idea how this approach looks like for
TIMEDTTCN-3.
The application of RTC-patterns is presented for both real-time property
evaluation approaches of TIMEDTTCN-3. One example demonstrates the
online evaluation of a latency requirement, another example the offline eval-
uation of a throughput requirement. The examples are appropriate for a
local test architecture. Though, as shown in the previous chapters, it is
no problem to create and evaluate time stamps in the same manner for a
distributed test architecture.
Figure 5.12 shows the TIMEDTTCN-3 code fragment which is to be provided
as an additional item of the solution part of the Latency RTC-pattern. This
code fragment provides a solution for testing a latency real-time requirement
using online evaluation. The relevant events which constitute the functional
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Test purpose

Constructive:
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TTCN−3Timed
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Figure 5.11: Possible Usages of RTC-patterns
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1 import from RTCPevaluationLibrary {
2 function evalLatencyOnline
3 }
4 ...
5 testcase latencyOnlinePattern() runs on ... {
6 var float timeA, timeB;
7 ...
8 PCO1.send(m1);
9 timeA:=self.now;

10 furtherEvents ();
11 PCO2.receive(m1);
12 timeB:=self.now;
13 setverdict(evalLatencyOnline(timeA, timeB, t1, t2));
14 ...
15 }

Figure 5.12: TIMEDTTCN-3 Skeleton for Online Evaluated Latency Pattern

behaviour of the Latency RTC-pattern are the two events of sending message
m1 at PCO1 and receiving message m1 at PCO2 (cf. Section 5.2.2). Thus,
the code fragment in Figure 5.12 provides the corresponding TIMEDTTCN-3
send and receive statements in lines 8 and 11. The reference to further
events can be found as a function call in Line 10.
For measuring the latency, time stamps for these events need to be gen-
erated. Therefore, the TIMEDTTCN-3 code fragment contains calls of the
self.now operation to obtain the current value of the clock in Line 9 just
after sending m1 to the SUT and in Line 12 just after m1 is received.
Since online evaluation is used, the time stamps are assigned to ordinary
TIMEDTTCN-3 float variables which are defined in Line 6 of Figure 5.12.
The online evaluation function evalLatencyOnline for assessing the generated
time stamps timeA and timeB with respect to the latency real-time require-
ment is called in Line 13. The actual parameters are the generated time
stamps and the upper and lower latency bound. Since the code fragment
accompanies the Latency RTC-pattern, the same abstract names for the la-
tency bounds (t1, t2) as in the corresponding MSC are used. However, for
instantiating the pattern code fragment, they have to be replaced as well as,
e.g., the message and port names.
The definition of the evaluation function evalLatencyOnline is not provided in
Figure 5.12. Instead, it is imported from the TIMEDTTCN-3 module RTCP-
evaluationLibrary as shown in lines 1–3. In addition to the TIMEDTTCN-3
code fragments, a predefined library of evaluation functions and time stamp
type definitions is provided together with the patterns.
An excerpt from this library is shown in Figure 5.13. The definition of
the evalLatencyOnline evaluation function can be found in lines 7–16. Its
implementation is exactly the same as in Figure 3.8 of Chapter 3.
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1 module RTCPevaluationLibrary {
2 type record ThroughputTimestampType {
3 float logtime,
4 charstring id
5 }
6
7 function evalLatencyOnline(float timeA, float timeB,
8 float lowerbound, float upperbound) return verdicttype {
9 var float latency:=timeB−timeA;

10 if (( latency<upperbound) and (lowerbound<latency)) {
11 return pass; // Non−functional pass
12 }
13 else {
14 return conf; // Non−functional fail
15 }
16 }
17
18 function evalThroughputOffline(charstring loopEntryId, charstring loopExitId,
19 float lowerThroughput, float upperThroughput,
20 integer n, logfile timelog) return verdicttype {
21 var float timeDiff;
22 var ThroughputTimestampType stampA, stampB;
23 if (timelog. first (ThroughputTimestampType:{?,−},
24 ThroughputTimestampType:{?, loopEntryId})==true) {
25 stampA:=timelog.retrieve; // Get current time stamp entry
26 if (timelog.next(ThroughputTimestampType:{?, loopExitId})==true) {
27 stampB:=timelog.retrieve; // Get current time stamp entry
28 }
29 else {
30 return fail; // Error while retrieving log
31 }
32 }
33 else {
34 return fail; // Error while retrieving log
35 }
36 timeDiff:=stampB.logTime−stampA.logTime;
37 if (( lowerThroughput<int2float(n)/timeDiff)
38 and (int2float(n)/timeDiff<upperThroughput)) {
39 return pass; // Non−functional pass
40 }
41 else {
42 return conf; // Non−functional fail
43 }
44 }
45 } // End of module RTCPevaluationLibrary

Figure 5.13: TIMEDTTCN-3 Library with Evaluation Functions for Patterns

The TIMEDTTCN-3 code fragment which is to be provided together with
Throughput Two PCO RTC-pattern (cf. Section 5.2.2) is shown in Fig-
ure 5.14. This time, the code fragment demonstrates how to apply the
offline evaluation approach to the throughput pattern.
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1 import from RTCPevaluationLibrary {
2 type ThroughputTimestampType;
3 function evalThroughputOffline
4 }
5 ...
6 testcase throughputOfflinePattern(integer n) runs on ... {
7 var integer i;
8 ...
9 log(ThroughputTimestampType:{self.now, ”loopBegin”});

10 for ( i :=0; i<n; i:=i+1) {
11 loopedPreamble();
12 LatencyPattern();
13 loopedPostamble();
14 }
15 log(ThroughputTimestampType:{self.now, ”loopEnd”});
16 ...
17 }
18
19 control {
20 var testrun myTestrun;
21 var logfile myLog;
22 var verdicttype myVerdict;
23 myTestrun:=execute(throughputOfflinePattern(n));
24 myVerdict:=myTestrun.getverdict;
25 if (myVerdict==pass) {
26 myLog:=myTestrun.getlog;
27 myVerdict:=evalThroughputOffline(”loopBegin”, ”loopEnd”,
28 int2float (n)/upperbound, int2float(n)/lowerbound, n, myLog);
29 myTestrun.setverdict(myVerdict);
30 }
31 }

Figure 5.14: Skeleton for Offline Evaluated Throughput Pattern

The events on which the throughput requirement is imposed are executed
in a loop. Thus, the TIMEDTTCN-3 code fragment contains a for loop in
lines 10–14. Since for assessing a throughput requirement just the number
of iterations and the overall duration is of interest, only the time stamps
for the points in time immediately before and after the execution of the
loop are created and stored in a log file (lines 9 and 15). The predefined
ThroughputTimestampType record type definition used as time stamp type
is imported from the RTCPevaluationLibrary module (Line 2).
Since offline evaluation is used in the example, the TIMEDTTCN-3 code as-
sociated to the Throughput Two PCO RTC-pattern provides additionally a
code snippet for the module control part (lines 19–31 of Figure 5.14). The
structure of the control part is the same as in the examples presented in
the previous chapters, i.e. first, the test case throughputOffline is executed
(Line 23) and afterwards, the offline evaluation function evalThroughputOf-
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fline is called (lines 27 and 28). The parameters of the evaluation function
are the identifiers of the log file entries, the upper and lower throughput
bounds3, the number of iterations, and the log file generated by the test
case. Likewise to the latency evaluation function, the evalThroughputOffline
evaluation function is also imported from the RTCPevaluationLibrary module
as shown in Line 3 of Figure 5.14.
The definition of the evalThroughputOffline evaluation function is given in
lines 18–44 of Figure 5.13. The function has six parameters: the labels of the
entry and exit time stamps surrounding the loop (loopEntryId, loopExitId),
the lower and upper throughput bounds (lowerThroughput, upperThrough-
put), the number of iterations (n), and the log file to evaluate (timelog).
Lines 23–27 navigate to the relevant time stamps in the log file and retrieve
the entries: The operation first (lines 23–24) sorts and restricts the log file
entries and moves a cursor to the first matching entry in the log file. A
”?” indicates the field used as sorting key. The second parameter of the
first operation is used to move the cursor to the entry which relates to the
loopEntryId. The log file entry which matches is extracted by the retrieve
operation (Line 25). The operation next (Line 26) advances the cursor to
the subsequent time stamp with a label identified by loopExitId. The calcula-
tion of the actual throughput value is performed in lines 36–43 based on the
arithmetic expression for throughput presented in Section 5.2.2. Depending
on the evaluation, the function returns a pass verdict if the real-time re-
quirement is met, or a conf verdict if the requirement is violated. A fail
verdict is returned if the desired time stamps were not found in the log file.

5.3.2 An Inres-based Example

The TIMEDTTCN-3 code which accompanies the RTC-patterns shall now
be utilised in an example. The aim is to create a TIMEDTTCN-3 real-time
test case from an MSC test purpose by using RTC-patterns.
Figure 5.15 depicts an MSC real-time test purpose for testing an Initiator
implementation of the Inres protocol with respect to some real-time require-
ments. The SUT can be accessed via the PCOs ISAP and MSAP. The
functional behaviour contained in the test purpose is the transfer data 100
times. For doing this, a connection needs to be established. After the test,
the connection has to be released. The real-time requirements of the test
purpose are to test:

1. a latency constraint imposed on the messages IDATreq and MDATind,

2. a throughput constraint on the events contained in the loop construct.

3The throughput bounds are calculated from the number of iterations and the interval
bounds as explained in the Throughput Two PCO RTC-pattern in Section 5.2.2.
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ISAP
UT

InresSystemType
SUT

MSAP
LT

ConnectionEstablishment

(0.1s,1s)

(1ms,5ms)

IDATreq(data)
MDATind
(DT,no,data)

MDATreq(AK,no)

loop <100>

ConnectionRelease

msc inresRTCpatternExample

Throughput Pattern Latency Pattern

Figure 5.15: RTC-patterns in the Inres Test Purpose MSC

In this example, the latency between sending message IDISreq and receiving
message MDATind shall be evaluated during the test execution (i.e. online),
whereas the throughput of the loop construct shall be evaluated after the
test execution (i.e. offline). The MSC diagram does not define which eval-
uation mechanism is desired since the MSC language does not provide the
possibility to express this. Such information is considered as additional di-
rectives for test generation.
When scanning through the given MSC diagram, the RTC-patterns Latency
and Throughput Two PCO can be recognised. The shaded areas in Fig-
ure 5.15 show, where both patterns are located in the diagram. The associ-
ated TIMEDTTCN-3 code fragments and the predefined evaluation module
provided in figures 5.12, 5.13, and 5.14 of the previous section can be used
to create a real-time test case which assesses the given test purpose.
Figure 5.16 shows the TIMEDTTCN-3 module which can be generated from
the MSC diagram in Figure 5.15 by applying RTC-patterns. In lines 2–5, all
required type and function definitions that are provided by the RTCPevalua-
tionLibrary module are imported. The second import statement in Line 6 has
to be added to provide access to all the Inres specific type definitions which
are defined in the module inresDefinitions. These application specific defi-
nitions cannot be generated using RTC-patterns, but have to be manually
specified as shown in Section 2.5.1.
The code fragments associated to the RTC-patterns which have been identi-
fied in the test purpose MSC can be found in the test case inresRTCpatternEx-
ample (lines 8–29). For example, the TIMEDTTCN-3 code associated to the
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1 module inresRTCpatternExampleModule {
2 import from RTCPevaluationLibrary {
3 type ThroughputTimestampType;
4 function evalThroughputOffline, evalLatencyOnline
5 }
6 import from inresDefinitions all;
7
8 testcase inresRTCpatternExample(integer n) runs on InresSystemType {
9 var integer i; // From Throughput pattern

10 var float timeA, timeB; // From Latency pattern
11 ConnectionEstablishment();
12 // Throughput pattern scheme begin
13 log(ThroughputTimestampType:{self.now, ”loopBegin”});
14 for ( i :=0; i<n; i:=i+1) {
15 // Latency pattern scheme begin
16 ISAP.send(IDATreq:{data});
17 timeA:=self.now;
18 MSAP.receive(MDATind:{DT,number,data});
19 timeB:=self.now;
20 setverdict(evalLatencyOnline(timeA, timeB, 0.001, 0.005));
21 // Latency pattern scheme end
22 MSAP.send(MDATreq:{AK,number});
23 }
24 log(ThroughputTimestampType:{self.now, ”loopEnd”});
25 // Throughput pattern scheme end
26 ConnectionRelease();
27 setverdict(pass);
28 stop;
29 }
30
31 control {
32 var testrun myTestrun;
33 var logfile myLog;
34 var verdicttype myVerdict;
35 myTestrun:=execute(inresRTexample(100));
36 myVerdict:=myTestrun.getverdict;
37 if (myVerdict==pass) {
38 myLog:=myTestrun.getlog;
39 myVerdict:=evalThroughputOffline(”loopBegin”, ”loopEnd”,
40 int2float (100)/1.0, int2float (100)/0.1, 100, myLog);
41 myTestrun.setverdict(myVerdict);
42 }
43 }
44 } // End of module inresRTCpatternExampleModule

Figure 5.16: Test Case Generated from Figure 5.15 and RTC-patterns

Throughput Two PCO pattern contributed to lines 9, 13–14, and 23–24 of
Figure 5.16. In comparison to the code fragment in Figure 5.14, the function
call loopedPreamble has been removed since it is empty, loopedPostamble has
been replaced by MSAP.send(MDATreq:AK,number). Furthermore, parts of
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the import block (lines 2–5) and the whole control part in lines 31–43 are
created from the TIMEDTTCN-3 code provided in Figure 5.14. For instanti-
ation of the pattern code fragments, the abstract names have been replaced,
e.g. n by 100, upperbound by 1.0, and lowerbound by 0.1.
The TIMEDTTCN-3 code fragments in Figure 5.12 which are provided to-
gether with the Latency pattern can be found in lines 10 and 16–20 of Fig-
ure 5.16. For instantiation of the code fragments, the abstract name PCO1
has been replaced by ISAP, PCO2 by MSAP, m1 by IDATreq:{data}, and
MDATind:{DT,number,data}, respectively. The reference to furtherEvents
has been dropped because it is empty. The interval bounds t1 and t2 have
been instantiated using the actual values 0.001 and 0.005.
This example demonstrated that is possible to create a real-time test case
from the TIMEDTTCN-3 code fragments accompanying the RTC-patterns
which have been identified in a test purpose MSC. Since TIMEDTTCN-3
code for both, generation and evaluation of time stamps, is provided in
combination, it is guaranteed that both fit together. Hence, RTC-patterns
do not only speed up test development but reduce also the risk of erroneous
test cases.

5.4 Summary

In this chapter, test patterns have been treated. After giving an introduction
into existing patterns at large and test patterns in particular, a pattern
classification scheme which is suitable for test patterns has been developed
and assessed. Additionally, the benefit of a unified pattern notation based
on a template has been discussed.
As the main contribution of this chapter, Real-time Communication pat-
terns (RTC-patterns) have been introduced. These patterns support the
specification of delay, throughput, and periodic real-time requirements for
distributed systems. Thus, RTC-patterns improve the requirements defini-
tion and the specification phase of real-time system development. Moreover,
these patterns can be applied to real-time test specification. Hence, RTC-
patterns can be used as part of an integrated development methodology,
which eases test development.
The suggested pattern-based real-time test development approach provides
an unambiguous way of generating time stamps and evaluating them using
corresponding evaluation functions. This is achieved by providing predefined
TIMEDTTCN-3 code for both of these activities as part of an RTC-pattern.
Thus, it is guaranteed that generation and evaluation of time stamps fit
together.
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Related Work
A similar pattern-based approach, which applies for passive testing, can
be found in [HBUP03]. It is based on [UHPB03] which has been briefly
discussed in Section 3.8. The approach is to obtain a trace of a distributed
system under test by monitoring. Then, it can be checked, whether the trace
fulfils temporal properties or not. The specification of temporal properties
is composed from property patterns which are described in [DAC99]. How-
ever, the used property patterns allow only to describe temporal relations
[Pnu77], i.e. “event b occurs after event a”, but not hard real-time prop-
erties. Moreover, this approach supports just passive testing. In contrast
to the presented RTC-patterns, it does hence not deal with the problem of
harmonising test behaviour and test evaluation.

Even though a new class of test patterns has been provided in this chapter,
further work on test patterns is possible. As the introduced classification
of known test patterns illustrates, a lot of areas in the test pattern space
are not covered, yet. For example, for functional system test patterns, a
promising work has been started in the ETSI work item Patterns in Test
Development (PTD) [ETS04].





Chapter 6

Conclusion

In this thesis, languages, tools, and patterns for the specification of dis-
tributed real-time tests have been presented. As a test specification lan-
guage, TIMEDTTCN-3 has been introduced. To ease the development of
TIMEDTTCN-3 real-time tests, computer aided test generation has been
discussed and a pattern-based approach for the specification of real-time
requirements and a harmonised subsequent test generation has been devel-
oped.
The proposed real-time test language TIMEDTTCN-3 is based on the Testing
and Test Control Notation version 3 (TTCN-3), a standardised language for
the specification of distributed black-box tests. TTCN-3 allows to describe
pure functional tests, only. Thus, TIMEDTTCN-3 adds some real-time exten-
sions. TIMEDTTCN-3 introduces the concept of absolute time into TTCN-3,
provides a means to specify clock-synchronised test components, extends the
TTCN-3 logging mechanism, supports online and offline evaluation of tests,
and adds a new test verdict to the existing TTCN-3 test verdicts.
For automatic test case generation, an approach has been presented which
allows to derive TIMEDTTCN-3 real-time test cases from real-time test pur-
poses. For the formalisation of test purposes, Message Sequence Charts
(MSCs) are used. It has been shown, how to derive real-time test cases
for local and for distributed test architectures. The underlying transfor-
mation rules have been implemented by a tool which is able to generate
TIMEDTTCN-3 test cases for local test architectures.
In addition to an automatic test generation approach, the benefit of using
patterns for test development in general has been discussed. A survey on
existing test patterns has been provided and a suitable test pattern classi-
fication scheme has been developed. For harmonising the specification and
testing of real-time requirements, Real-time Communication patterns (RTC-
patterns) have been introduced. RTC-patterns provide solutions for using
MSCs as building blocks for expressing real-time requirements in, e.g., test
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purposes. By associating TIMEDTTCN-3 code to each RTC-pattern, match-
ing real-time test cases and test evaluation functions can be easily obtained
for each RTC-pattern contained in a real-time test purpose.

6.1 Related Work

Approaches related to TTCN-based real-time test specification, generation
of TTCN test cases from MSC test purposes and pattern-based property
specification have already been mentioned at the end of each of the preceding
three chapters. In the following, just two further test approaches which
involve time shall be discussed.
JUnitPerf [Cla04] is an extension of the Java-based unit test framework
JUnit [GMB04]. JUnitPerf provides a TimedTest decorator to impose up-
per bounds on the execution time of existing functional JUnit test cases.
Additionally, a LoadTest decorator may be used for executing a test case
simultaneously several times. In comparison to TIMEDTTCN-3, JUnitPerf
has several drawbacks. Since it is intended for unit tests, it does not sup-
port distributed testing. Furthermore, the provided means for real-time
testing are quite limited and, in fact, more comparable to elements of the
TTCN-3 module control part: The TimedTest decorator behaves like the
optional time supervision parameter of the TTCN-3 execute statement,
i.e. it relates to the whole test case including the duration contributed by
the pre- and postambles. The LoadTest decorator is comparable to a loop
in a TTCN-3 module control part. Though, JUnitPerf supports concurrent
calls of a test case. In TTCN-3, this cannot be achieved from within the
module control part.
The UML 2.0 Testing Profile (U2TP) [OMG04b, DGNP04] is a profile for
the version 2.0 of the Unified Modeling Language [OMG03a, OMG03b]. It al-
lows the specification of abstract black-box tests using UML diagrams. The
profile adds four concept packages to UML in order to cover the aspects
test architecture, test behaviour, test data, and time. The test architecture
concepts provide support for describing a test architecture using structural
UML diagrams, the test behaviour concepts allow to specify test behaviour
using any UML behavioural diagram. For real-time testing, the time con-
cepts are of relevance.
The time concepts added to UML by U2TP are inspired by TTCN-3 and
even TIMEDTTCN-3. For example, U2TP provides TTCN-3-like timers,
which can be started, stopped, read, and they may trigger a timeout event.
From TIMEDTTCN-3, the notion of timezones is adopted. Furthermore,
the predefined UML 2.0 types Duration and Time may be used for storing
relative and absolute time values. Like in TIMEDTTCN-3, the keyword now
represents the current time. UML 2.0 sequence diagrams may, e.g., be used
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to specify test behaviour. Since UML 2.0 sequence diagrams are inspired by
MSC, similar time constraints may be expressed.1

At the first glance, U2TP resembles the Graphical Presentation Format for
TTCN-3 (GFT). In fact, U2TP is much more abstract than GFT and
TTCN-3, and thus, also more abstract than TIMEDTTCN-3. For example,
for the implementation of U2TP tests, mappings to JUnit and TTCN-3 ex-
ist. However, both languages differ semantically, which shows that different
interpretation of U2TP test suites are possible. The reason is that UML and
U2TP have semantic variation points, which allows different test implemen-
tations for the same U2TP test specification. For example, the semantics of
message reception at test components is not defined in detail, i.e. whether
queues are used and, if yes, whether one queue per interface exists or just
one queue for a test component which is shared by all its interfaces. Hence,
in contrast to TIMEDTTCN-3, the implementation of real-time tests from
U2TP test specifications is neither precise nor obvious. Another example
are sequence diagrams which can be used in U2TP test behaviour specifica-
tions to impose time constraints on message exchanges. However, in U2TP,
it cannot be specified how to actually evaluate the fulfilment of a real-time
requirement. In fact, U2TP assumes to specify real-time requirements more
in a test purpose-like style.

6.2 Outlook

Concerning TIMEDTTCN-3, a standardisation of the language is desirable.
Thus, during the development of TIMEDTTCN-3, solutions have been cho-
sen which reuse existing concepts of TTCN-3 and require only minimal
changes to the existing TTCN-3 language. Corresponding change requests
[Neu02, Dai03] have already been submitted to the European Telecommuni-
cations Standards Institute (ETSI) which is responsible for the maintenance
of TTCN-3. Parts of the TIMEDTTCN-3 proposal have already influenced
TTCN-3, e.g. the syntax for setting and getting a test verdict. Furthermore,
it is under discussion to adopt local clocks into the standard as well as the
introduction of more formalised log file format. In case of a standardisation
of TIMEDTTCN-3, a formal operational semantics which refines the existing
flow graph-based semantics of TTCN-3 is required.
Moreover, it would be worthwhile to assess the general applicability of
TIMEDTTCN-3 to performance testing, i.e. testing of soft real-time require-
ments. Even though TIMEDTTCN-3 was developed with having hard real-
time requirements in mind, first experiments demonstrated that at least

1In [DS04], a possible influence of U2TP’s time concepts on the UML profile Profile
for Schedulability, Performance and Time Specification [OMG03c] is investigated. Even
though the latter profile does not relate to testing, its concepts might in turn be used in
U2TP test specifications.
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simple real-time properties, like mean inter-arrival times, can be evaluated
using TIMEDTTCN-3.
The UML 2.0 Testing Profile was partly influenced by TIMEDTTCN-3.
Though, not all concepts of TIMEDTTCN-3 are available in U2TP. Thus,
it would be reasonable to investigate the necessary extensions of U2TP to
allow a mapping between U2TP and TIMEDTTCN-3.
Regarding test patterns, a more general application of patterns in the test
development process seems very promising as well as the adoption of other
recent software development techniques also for test development. For ex-
ample, refactoring [Fow00] might as well be applied to test suites, and for
real-time test specification, aspect-oriented programming [KLM+97] might
be considered as a means for non-intrusive instrumentation of test cases in
order to generate time stamps.
The experiences from the development of the RTC-patterns are valuable
for test patterns in general. First work on this topic has started in the
Patterns in Test Development (PTD) ETSI work item. Hence, this thesis
does not only provide a real-time test specification language and tools, but
also methodological support for a broader area of test development.
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ASN.1 Abstract Syntax Notation One

ATS Abstract Test Suite

CORBA Common Object Request Broker Architecture

CTMF Conformance Testing Methodology and Framework

ETS Executable Test Suite

ETSI European Telecommunications Standards Institute

FIFO First In First Out

GFT Graphical Presentation Format for TTCN-3

GPS Global Positioning System

HMSC High-level Message Sequence Chart

IDL Interface Definition Language

IEC International Electrotechnical Commission

IPv6 Internet Protocol version 6
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IUT Implementation Under Test

LT Lower Tester

MSC Message Sequence Chart

MTBF Mean Time Between Failure

MTC Main Test Component

OSI Open Systems Interconnection
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PCO Point of Control and Observation

PDU Protocol Data Unit

PIXIT Protocol Implementation eXtra Information for Testing

PTC Parallel Test Component

PTD Patterns in Test Development

QoS Quality of Service

RTC-pattern Real-time Communication pattern

SAP Service Access Point

SDL Specification and Description Language

SUT System Under Test

TC Test Component

TCI TTCN-3 Control Interface

TCL Tool Command Language

TFT Tabular Presentation Format

TRI TTCN-3 Runtime Interface

TTCN Tree and Tabular Combined Notation

TTCN-3 Testing and Test Control Notation version 3

UML Unified Modeling Language

UT Upper Tester

U2TP UML 2.0 Testing Profile

VoIP Voice over IP

XML Extensible Markup Language
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