Refactoring for TTCN-3 Test Suites

Benjamin Zeiss', Helmut Neukirchen', Jens Grabowski®,
Dominic Evans?, and Paul Baker?

1 Software Engineering for Distributed Systems Group,
Institute for Informatics, University of Gottingen,
Lotzestr. 16-18, D-37083 Gottingen, Germany
{zeiss,neukirchen, grabowski}@cs.uni-goettingen.de
2 Motorola Labs, Jays Close, Viables Industrial Estate, Basingstoke, RG22 4PD, UK
{vnsd001,Paul .Baker}@motorola.com

Abstract. Experience with the development and maintenance of test
suites has shown that the Testing and Test Control Notation (TTCN-3)
provides very good concepts for adequate test specification. However, ex-
perience has also demonstrated that during either the migration of legacy
test suites to TTCN-3, or the development of large TTCN-3 test speci-
fications, users have found it is difficult to construct TTCN-3 tests that
are concise with respect to readability, usability, and maintainability.
To address these issues, this paper investigates refactoring for TTCN-3;
systematically restructuring a test suite without changing its behaviour.
Complementary metrics are suggested to assess the readability and main-
tainability of TTCN-3 test suites. For automation, a tool called TRex
has been developed that supports refactoring and metrics for TTCN-3.

1 Introduction

The maintenance and migration of legacy test suites is an important issue for
industry. For example, within Motorola test suites developed with a high cou-
pling between value and behaviour specification can lead to a large maintenance
burden [1]. A single change to a data type can result in the need to change many
tests. The Testing and Test Control Notation (TTCN-3) [2, 3] contains concepts
that can alleviate such issues, such as templates. However, experience has demon-
strated that it is not always obvious how to use such concepts in a manner that
can maximise the readability, usability, and maintainability of TTCN-3. In ad-
dition, Motorola teams have encountered problems migrating their test suites
to TTCN-3. In doing so, they develop tools that perform simple translations
of legacy test suites to TTCN-3. This can often result in non-optimal TTCN-3
code. For example, the conversion of a legacy test suite for a UMTS based com-
ponent to TTCN-3 resulted in 60,000 lines of code, which then leads to another
maintenance burden.

To this end, Motorola has collaborated with the University of Gottingen to
develop a tool, called T'Rexz, for assessing attributes and subsequent restructuring
of a TTCN-3 test suite. The current aims for TRex are to: (1) enable the as-
sessment of a TTCN-3 test suite with respect to lessons learnt from experience,

(2) provide a means of detecting opportunities to avoid any issues, and (3) a
means for restructuring TTCN-3 test suites to improve them with respect to
any existing issues. The actual restructuring is performed by applying refactor-
ings. For software development, refactoring [4] is a proven means to restructure
software with the aim of improving its quality. We suggest to apply refactoring
also to TTCN-3 test suites.

This paper is structured as follows: In the next chapter, foundations on refac-
toring and a survey on related work are presented. Chapter 3 contains the main
contribution of this paper; our catalogue of 49 refactorings for TTCN-3. In Chap-
ter 4 we give an overview of our activities into automating the application of
these refactorings using our TRex tool; making an assessment of TTCN-3 test
suites based on metrics we have defined and employing a rule based approach to
derive applicable refactorings. Finally, we conclude with a summary and outlook.

2 Foundations

Refactoring is defined as “a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its observ-
able behavior” [5]. This means refactoring is a remedy against software ageing [6].
While refactoring can be regarded as “cleaning up source code”, it is more sys-
tematical and thus less error prone than arbitrary code clean-up, because each
refactoring provides a checklist of small and simple transformation steps. Due to
the simplicity of the steps, the effects of the changes are predictable. Sometimes,
steps even appear to be awkward, but in fact such steps help to figure out the
consequences of a refactoring as soon as possible and maintain the correctness
of software not only before and after, but even within a refactoring.

The essence of most refactorings is independent from a specific programming
language. However, a number of refactorings make use of particular constructs
of a programming language, or of a programming paradigm in general, and are
thus only applicable to source code written in this language.

Examples for simple refactorings are: renaming a variable to give it a more
meaningful name, encapsulating fields of a class by replacing direct field ac-
cesses by calls to corresponding getter and setter accessor methods, or extract-
ing a group of statements and moving it into a separate function. More complex
refactorings are often based on simpler refactorings. For example, converting a
procedural design into an object-oriented design requires to convert record types
into data classes, to encapsulate the public fields of the data classes, and to ex-
tract and move statements from procedures into methods of the data classes.

Even though refactoring has a long tradition in the evolutionary software
development community around Smalltalk, the first detailed written work on
refactoring was the PhD thesis of Opdyke [7] who treats refactoring of C++
source code. Refactoring has finally been popularised by Fowler and his book
“Refactoring” [5] which contains a catalogue of 72 refactorings which are appli-
cable to Java source code.

2.1 Related Work

Existing work on refactoring deals mainly with the refactoring of source code
and little is known on the refactoring of test specifications. Probably the most
frequent refactoring of tests occurs in agile software development processes. For
example, the Extreme Programming approach [8], where the implementation and
the unit test suite, which is realised using the same programming language as
the implementation (e.g. the JUnit framework [9] for unit testing Java imple-
mentations), are both subject of refactoring. However, only one publication is
known which treats refactoring of unit tests on their own: van Deursen et al. [10]
suggest to automate also the creation of external resources, to check equality of
two Java objects not by comparing the results of their toString() methods, but
to implement and use the more robust equals() method instead, and to provide
an explanatory message when a test fails. While the latter refactoring is also
applicable to TTCN-3, the other refactorings are specific to unit testing which
is not the primary target of TTCN-3.

Concerning TTCN-3 and its predecessor, the Tree and Tabular Combined
Notation (TTCN-2) [11], three publications [12-14] deal with transformations
which can be regarded as refactoring. Schmitt [12] and Wu-Hen-Chang et al. [13]
propose solutions for the automatic restructuring of test data descriptions. Even
though different approaches are chosen and Schmitt treats the constraints of
TTCN-2, whereas Wu-Hen-Chang et al. deal with TTCN-3 templates, both ap-
ply semantics preserving operations to the test data description. In fact, these
operations are refactorings. They are based on the concepts which are available
in both test languages to specialise, parametrise, and reference test data descrip-
tions. Deif} [14] improves the TTCN-3 code generated by an automated conver-
sion of a TTCN-2 test suite by applying some refactoring-like transformations.
For example, TTCN-3 altsteps which only contain an else branch starting with
a send statement, are transformed into a more appropriate TTCN-3 function.

2.2 Validating the Equivalence of Tests

Opdyke [7] and Fowler [5] address the problem of how to ensure that a refactor-
ing does not change the observable behaviour of the modified software. While
Opdyke assumes that an automated tool performs the actual refactoring by ap-
plying transformation steps which are proven to be behaviour preserving, Fowler
suggests a manual approach which is applicable if no such tool exists. Each en-
try in his refactoring catalogue provides so called mechanics: concise, systematic
step-by-step instructions for humans of how to carry out the refactoring. To val-
idate that refactoring did not change the observable behaviour, Fowler presumes
that an adequate suite of automated tests exists. If the implementation passes
that test suite before and after the refactoring, it is assumed that its observable
behaviour was not affected by the refactoring.

When refactoring tests manually, van Deursen et al. [10] suggest running
the test suite which is subject of a refactoring against the same implementation
before and after the refactoring; checking that the same verdict is returned in

both cases. However, this is not sufficient since not all paths of the test suite
may be executed. Instead, bisimulation [15] of both the original and refactored
test suites is required to validate their equivalence, i.e. that they yield the same
verdict for the same behaviours of an implementation.

3 A Refactoring Catalogue for TTCN-3

The presentation of our refactorings for TTCN-3 is inspired by Fowler’s refac-
toring catalogue for Java [5]. Hence, we use the same fixed format for describing
our refactorings: each refactoring is described by its name, a summary, a motiva-
tion, mechanics, and an example. The name of a refactoring is always written in
slanted type. The mechanics section contains systematic checklist-like instruc-
tions of how to perform the refactoring. In that section, we use the term “source”
to refer to the code which is addressed by a refactoring and thus usually removed
or simplified and the term “target” to refer to code which is created as a result of
arefactoring. The example section illustrates the refactoring by showing TTCN-3
core notation excerpts before and after the refactoring is applied.

The mechanics sections provided in this refactoring catalogue can be ex-
ploited in two ways: the refactorings can be applied manually or automated by
building a tool based on the experience distilled in the step-by-step instructions.
Since manual refactoring is error prone, the mechanics also contain the “compile”
and “validate” instructions. The compile step is used to check whether syntax
and static semantics of the test case are still valid. The validate step means to
start the bisimulation process to validate that the original and refactored test
suite still behave equivalently. To detect possible mistakes during refactoring as
soon as possible, compile and validate steps are suggested as soon and as often
as they are applicable. As discussed in Section 2.2, we suggest to automate the
application of refactorings using our TRex tool which is described in Section 4.

To ease usage of our refactoring catalogue, we have divided our refactorings
into refactorings for test behaviour, refactorings for data descriptions, and refac-
torings which improve the overall structure of a test suite. This classification is
used in sections 3.1 and 3.2.

3.1 Language Independent Refactorings Applicable to TTCN-3

We investigated which of the 72 refactorings from Fowler [5] are also relevant
for TTCN-3. Even though these refactorings were intended for Java, some of
them are language independent or can be reinterpreted in a way that they are
applicable to TTCN-3. For their reinterpretation, it is necessary to replace the
notion of Java methods by TTCN-3 functions or testcases. While TTCN-3 is
not an object-oriented language, some of the Java refactorings are nevertheless
applicable if the notion of Java classes and fields is replaced by TTCN-3 com-
ponent types and wvariables, constants, timer, and ports local to a component
respectively. Furthermore, whenever Fowler’s mechanics instruct to “test” the
refactored implementation, the refactored test suite needs to be validated.

Under these circumstances, we found that 28 refactorings are applicable to
TTCN-3. Where necessary, we have changed the name of these refactorings to
reflect their reinterpretation for TTCN-3. In this case, the original name used
by Fowler is given in square brackets. The list of these refactorings is as follows:

Refactorings for Test Behaviour

— Consolidate Conditional Expression,

— Consolidate Duplicate Conditional Fragments,
— Decompose Conditional,

— Extract Function [Extract Method],

— Introduce Assertion,

— Introduce Explaining Variable,

— Inline Function [Inline Method],

— Inline Temp,

— Remove Assignments to Parameters,

— Remove Control Flag,

— Replace Nested Conditional with Guard Clauses,
— Replace Temp with Query,

— Separate Query From Modifier,

— Split Temporary Variable,

— Substitute Algorithm.

Refactorings for Improving the Overall Structure of a Test Suite

— Add Parameter,

— Extract Extended Component [Extract Subclass],

— Extract Parent Component [Extract Superclass],

— Introduce Local Port/Variable/Constant/Timer [Introduce Local Extension],

— Introduce Record Type Parameter [Introduce Parameter Object],

— Parametrise Testcase/Function/Altstep [Parameterize Method],

— Pull Up Port/Variable/Constant/Timer [Pull Up Field],

— Push Down Port/Variable/Constant/Timer [Push Down Field],

— Replace Magic Number with Symbolic Constant,

— Remove Parameter,

— Rename [Rename Method)?,

— Replace Parameter with Explicit Functions [Replace Parameter with Explicit
Methods],

— Replace Parameter with Function [Replace Parameter with Method).

3 Note that while Fowler refers only to renaming a method, not only the corresponding
TTCN-3 constructs testcase and function qualify for renaming, but also variables,
types, templates, constants, ports, timer, components, modules, groups and altsteps
are reasonable subjects of the Rename refactoring.

No refactorings which are solely suitable for data description can be obtained
by reinterpreting Fowler’s refactorings, since data description relates mainly to
the notion of TTCN-3 templates which do not exist in Java. However, some
of Fowler’s refactorings like Inline Method or Add and Remove Parameter are
quite generic and may also be reinterpreted for TTCN-3 templates. Where the
mechanics of these refactorings differs significantly when applied to templates,
we have considered them as TTCN-3 specific refactorings and describe them in
the next section.

3.2 TTCN-3 Specific Refactorings

In addition to the language independent refactorings, restructuring of TTCN-3
test suites can be leveraged by considering language constructs which are specific
to TTCN-3. Currently, our refactorings take advantage of TTCN-3 altsteps, tem-
plates, grouping, modules and importing from modules, components, restricted
sub-types, logging, and creating concurrent test cases.

Those refactorings which refer to templates and to adding an explanatory
log message include some of the known transformations surveyed in Section 2.1.
However, we go beyond the existing work by being more extensive and by pro-
viding for each refactoring detailed step-by-step instructions and examples for
their application.

Until now, we identified 21 TTCN-3 specific refactorings. The summaries of
these refactorings are as follows:

Refactorings for Test Behaviour

— Extract Altstep: One or more alternative branches of an alt statement occur
several times in a test suite and are thus moved into an altstep on its own.

— Split Altstep: Altsteps that contain branches which are not closely related
to each other are split to maximise reuse potential.

— Replace Altstep with Default: Altsteps that are referenced in more than one
alt statement are removed from the alt statements and activated as default
altsteps.

— Add Explanatory Log: Add a log statement to explain why a testcase
aborted or a non-pass verdict was assigned.

— Distribute Test: Transform a non-concurrent test case into a distributed
concurrent test case.

Refactorings for Improving the Overall Structure of a Test Suite

— Extract Module / Move Declarations to Another Module: Move parts of
a module into a newly created module or into another existing module to
improve structure and reusability.

— Group Fragments: Add additional structure to a module by putting code
fragments into groups.

— Restrict Imports: Restrict import statements to obtain smaller inter-module
interfaces and less processing load for TTCN-3 tools.

— Prefix Imported Declarations: Prefix imported declarations to avoid possible
name clashes.

— Parametrise Module: Parametrise modules to specify environment specific
parameters at tool level.

— Move Module Constant to Component: A declaration of a constant at module
level used exclusively in the context of a single component is moved into the
component declaration.

— Move Local Variable/Constant/Timer to Component: A local variable, con-
stant, or timer is moved to a component when used in different functions,
testcases, or altsteps which run on the same component.

— Move Component Variable/Constant/Timer to Local Scope: A component
variable, constant, or timer is moved to a local scope when only used in a
single function, testcase, or altstep.

— Generalise Runs On: Relax runs on specification by using a more general
component type.

Refactorings for Data Descriptions

— Inline Template: A template that is used only once is inlined.

— Extract Template: Inlined templates that are used more than once are ex-
tracted into a template definition and referenced.

— Replace Template with Modified Template: Templates of structured or list
type with similar content values that differ only by a few fields are simplified
by using modified templates.

— Parametrise Template: Several templates of the same type, which merely use
different field values, are replaced by a single parametrised template.

— Inline Template Parameter: A formal parameter of a template which is al-
ways given the same actual value is inlined.

— Decompose Template: Complex template declarations are decomposed into
smaller templates using references.

— Subtype Basic Types: Range constrained subtypes are used instead of basic
types in order to more easily detect code flaws.

In the following, we will focus on refactorings for data descriptions, since most
of the maintenance problems at Motorola were related to the use of templates. To
give an impression of how our TTCN-3 refactoring catalogue looks, we present
two refactorings in detail: Inline Template Parameter and Parametrise Template.
Please refer to our complete TTCN-3 refactoring catalogue [16] for a detailed
description of all refactorings.

3.2.1 Parametrise Template

Summary: Several templates of the same type, which merely use different field
values, are replaced by a single parametrised template.

Motivation: Occasionally, there are several template declarations of the same
type which are basically similar, but vary in values at the same fields. These
template declarations are candidates for parametrisation. Instead of keeping all
of them, they are replaced with a single template declaration where the variations
are handled by template parameters. Such a change removes code duplication,
improves maintainability and increases flexibility. If the template declarations
are similar, but the values vary in different fields, the Replace Template with
Modified Template refactoring may be a better choice.

Mechanics:
— Create the parametrised target template signature. It is of the same type

as the source templates. Introduce a parameter for each field in which the
source template values differ. The target template declaration’s name should
reflect the meaning of the non-parametrised values.

Copy one source template body to the parametrised target template decla-
ration and replace the varying parts with their newly introduced template
parameters.

Compile.

Repeat the following steps for all references to the source template declara-
tions:

e Replace the source template reference with a reference to the
parametrised target template. As parameter values, use the field val-
ues from the originally referenced template declaration corresponding to
the parametrised values in the target template.

e Compile and validate.

Remove the source template declarations from the code. They should not be
referenced anymore.
Compile and validate.

Example: Listing 1.1 shows the unrefactored example. The source template
declarations firstTemplate (lines 6-9) and secondTemplate (lines 11-14) differ
only in the values of ipAddress.

© 00Uk WN -

Listing 1.1. Parametrise Template (Unrefactored)

type record ExampleType {
boolean ipv6,
charstring ipAddress

}

template ExampleType firstTemplate := {
ipv6 := false,
ipAddress := "127.0.0.1"

}

template ExampleType secondTemplate := {
ipv6 := false,
ipAddress := "134.72.13.2"

testcase exampleTestCase() runs on ExampleComponent {
pt.send(firstTemplate);
pt.receive(secondTemplate);

}

Listing 1.2. Parametrise Template (Refactored)

1| type record ExampleType {

2 boolean ipv6,

3 charstring ipAddress

4

5

6 | template ExampleType parametrised Template(charstring addressParameter) := {
7 ipv6 := false,

8 ipAddress := addressParameter

o}
10
11 | testcase exampleTestCase() runs on ExampleComponent {
12| pt.send(parametrisedTemplate("127.0.0.1"));
13| pt.receive(parametrisedTemplate("134.72.13.2"));
14

The resulting code after applying Parametrise Template is shown in List-
ing 1.2. A new target template declaration parametrisedTemplate (lines 6-9) is
created which has a parameter for the varying ipAddress field in the source tem-
plate declarations. The references to firstTemplate (Line 12) and secondTemplate
(Line 13) are replaced with parametrisedTemplate and their corresponding IP
addresses as parameters.

3.2.2 Inline Template Parameter

Summary: A formal parameter of a template which is always given the same
actual value is inlined.

Motivation: Templates are typically parametrised to avoid multiple template
declarations that differ only in a few values. However, as test suites grow and
change over time, the usage of its templates may change as well. As a result,
there may be situations when all references to a parametrised template have one
or more actual parameters with the same values. This can also happen when the
test engineer is overly eager: he parametrises templates as he thinks it might be
useful, but it later turns out to be unnecessary. In any case, there are template
references with unneeded parameters creating code clutter and more complexity
than useful. Thus, the template parameter should be inlined and removed from
all references.

Mechanics:

— Verify that all template references to the parametrised source template dec-
laration have a common actual parameter value. The parameter with the
common actual parameter values is the source parameter. Record the com-
mon value.

e If you have more than one common actual parameter value in all refer-
ences, it is easier to inline them together. Therefore, perform each step
that concerns the source parameters for each source parameter at once.

— Copy the source template declaration and give the copied declaration a tem-
porary name. It is the target template declaration.

In the target template declaration body, replace each reference to the source
parameter with the value noted in the first step. In the target template
declaration signature, remove the parameter corresponding to the source
parameter.

Compile.

Remove the source template declaration.

Rename the name of the target template declaration using the name of the
source template declaration.

Find all references to the target template declaration. Remove the source
parameter from the actual parameter list of each reference.

Compile and validate.

Consider usage of the Rename refactoring to improve the target template
declaration name.

Example: Listing 1.3, contains the parametrised template exampleTemplate in
lines 6-9. All references to this template use the same actual parameter value
(lines 12 and 13). Hence, the corresponding parameter addressParameter in Line 6

is inlined.
Listing 1.3. Inline Template Parameter (Unrefactored)
1| type record ExampleType {
2 boolean ipv6,
3 charstring ipAddress
4|3
5
6 | template ExampleType exampleTemplate(charstring addressParameter) := {
7 ipv6 := false,
8 ipAddress := addressParameter
9|}
10
11 | testcase exampleTestCase() runs on ExampleComponent {
12| pt.send(exampleTemplate("127.0.0.1"));
13| pt.receive(exampleTemplate("127.0.0.1"));
14

After applying the Inline Template Parameter refactoring (Listing 1.4), the

string value "127.0.0.1" is inlined into the template body of exampleTemplate
(Line 8), the corresponding formal parameter of the template (Line 6) and the
corresponding actual parameter of each reference to exampleTemplate (lines 12
and 13) are removed.

© 0O~ Uk WN -

== e
W= O

Listing 1.4. Inline Template Parameter (Refactored)

type record ExampleType {
boolean ipv6,
charstring ipAddress

template ExampleType exampleTemplate := {
ipv6 := false,
ipAddress := " 127.0.0.1"

}

testcase exampleTestCase() runs on ExampleComponent {
pt.send(exampleTemplate);
pt.receive(exampleTemplate);

4 Automation of TTCN-3 Refactoring

In the following we describe how the restructuring of TTCN-3 test suites can be
automated. To locate inappropriate usage of TTCN-3 we use so called bad smells
or code smells, a kind of anti-pattern [17]. Examples for code smells include
duplicated code, overly long testcases, or templates which are never referenced.
Some of them can only be detected by pattern recognition, but some of them
may also be detected by calculating metrics. We have started with a metrics-
based approach (Section 4.1) which is also suitable for a general assessment of
TTCN-3 test suites. Based on these metrics we provide rules of when to apply
which refactoring. Our TRex tool (Section 4.2) calculates these metrics, applies
the rules to suggest appropriate refactorings, and automatically performs the
individual steps of a refactoring.

4.1 TTCN-3 Metrics

Since quantitative methods like metrics have proved to be a powerful means to
control processes in the other sciences, computer science practitioners and the-
oreticians introduced similar approaches into software development. A software
metric is a measure of some property of a piece of software or its specifications.

Software metrics can be structured into linguistic, structural, and hybrid met-
rics. Linguistic metrics measure properties of the usage of a programming or spec-
ification language. Well-known linguistic metrics are the Halstead metrics [18].
Examples of the Halstead metrics are number of operators, number of operands,
program volume, or program level. Structural metrics analyse the structure of a
program or specification. The most popular examples of structural metrics are
the McCabe metrics [19]. They are based on the control flow graph of a program
and measure properties of this graph, such as the cyclomatic number. Hybrid
metrics combine linguistic and structural metrics.

Halstead and the McCabe metrics are mainly developed for procedural pro-
grams, but there also exist metrics for more modern program paradigms like
object oriented programs. A popular example of such metrics is the Chidamber
& Kemerer metrics suite [20] which measures properties like depth of inheritance
tree, coupling between objects, or lack of cohesion in methods.

We started to investigate metrics to measure the quality of TTCN-3 test
suites. For this, we want to use (and possibly adapt) the well-known metrics
mentioned above, but also define new TTCN-3 specific metrics. In a first step,
we implemented some basic linguistic metrics in the TRex tool. These are:

— Number of non-comment lines of TTCN-8 source code.

— Number of test cases, including Number of references to each test case.

— Number of functions, including Number of references to each function.

— Number of altsteps, including Number of references to each altstep.

— Number of port types, including Number of references to each port type.

— Number of component types, including Number of references to each compo-
nent type.

— Number of data type definitions, including Number of references to each data

type.
— Number of template definitions, including Number of references to each tem-

plate and Number of parametrised templates.
— Template coupling, which will be computed as follows:

n
> score(stmt(i))
Template coupling := =2

n
Where stmt is the sequence of behaviour statements referencing templates
in a test suite, n is the number of statements in stmt, and stmit(i) denotes
the ith statement in stmt. score(stmit(i)) is defined as follows:

1, if stmt(i) references a template without parameters,
e.g. MyPort.send(MyTemplateRef)
or uses wildcards only, e.g. MyPort.send(MyType:?)
score(stmt(i)) == ¢ 2, if stmi(i) references a template with parameters,

e.g. MyPort.send(MyTemplateRef(1, "a"))
3, if stmit(i) uses an inline template,

e.g. MyPort.receive(MyType:{n:=1, s:="a"})

Template coupling measures the dependence of test behaviour and test data
in the form of template definitions, i.e. whether a change of test data requires
changing test behaviour and vice versa. The value range is between 1 (i.e. be-
haviour statements refer only to template definitions or use wildcards) and 3 (i.e.
behaviour statements only use inline templates). For the interpretation of such
a coupling score appropriate boundary values are required. These may depend
on the actual usage of the test suite. For example, for good maintainability a
decoupling of test data and test behaviour (i.e. the template coupling score is
close to 1) might be advantageous and for optimal readability most templates
may be inline templates (i.e. the template coupling score will be close to 3).

With appropriate boundary values for the different metrics, we want to iden-
tify places in TTCN-3 specifications which need refactoring. At the moment we
have a rough idea of suitable values and have started to analyse real-world test
suites to further improve our estimates. Some metrics may even allow an entirely
automatic refactoring to take place.

We have found some rules that obviously help to improve the quality of
TTCN-3 test suites with respect to template definitions. Most of these rules can
be directly related to metrics and refactorings:

Rule 1: A template definition which is not referenced (Metric value: Number of
References to the Template = 0) should be removed.

Rule 2: A template definition which is only referenced once (Metric value: Num-
ber of References to the Template = 1) should be inlined and its def-
inition should be removed (Application of Inline Template refactoring
which, for parametrised templates, includes the inlining of parameters.)

Rule 3:

Rule 4:

Rule 5:

Rule 6:

Rule 7:

Rule 8:

If a user wants to achieve “optimal readability” (i.e. maximise the Tem-

plate Coupling Score), a template definition which is referenced multiple

times (Metric value: Number of References to the Template > 1) should
be inlined and its definition should be removed (Application of Inline

Template refactoring).

If a user wants to achieve “good maintainability” (i.e. a Template Cou-

pling Score close to 1, a template definition without parameters which

is referenced multiple times (Metric value: Number of References to the

Template > 1) should not be altered.

A template definition in which all fields receive their values by means

of parameters should be inlined and its definition removed (Application

of Inline Template refactoring).

Unused parameters of a template definition (e.g. parameters which are

not used in assignments) should be removed altering the template defi-

nition (Application of Remove Parameter refactoring).

For a template definition which is referenced multiple times and which

has formal parameters that do not adhere to Rules 5 or 6 the following

rules apply:

(a) If all instantiations of a template are the same, i.e. all formal pa-
rameters are given the same values, then the formal parameters are
removed and the assigned elements are defined explicitly (Applica-
tion of Inline Template Parameter refactoring).

(b) If instantiations of a template vary, i.e. all formal parameters are
given different values, formal parameters account for the values of
50% or more of the fields within the template definition and the user
wants “optimal readability”, then the template shall be inlined and
its definition be removed (Application of Inline Template refactor-
ing).

If the user aims for “good maintainability” and two or more template

definitions exist for the same type, then the following rules could apply:

(a) If template values only differ for the same template fields and these
differing fields account for a certain percentage (assume 30%) of
the overall fields for the template definition then the templates
can be reduced to a single parametrised definition (Application of
Parametrise Template refactoring).

(b) If template values differ for different template fields, then we cur-
rently do nothing as the user would have to choose which field to
parametrise upon.

The rules presented above can only give an impression of how metrics can
steer the refactoring process. We are currently refining the rules and defining new
rules for the refactoring of test behaviour and the TTCN-3 module structure.
This includes the definition of further metrics to underpin the rules, analysis
of the influence of the rule ordering, and the investigation of options such as
“good maintainability or “optimal readability” which are informally mentioned
above. (E.g. using inline templates optimises readability only up to a certain

size of template, or the fact that parametrised templates promote reuse, but not
necessarily maintainability or readability.)

4.2 Tool Support

We have implemented a first version of TRex, the TTCN-3 Refactoring and
Metrics tool. Based on the rules defined in the previous section, refactorings are
suggested automatically by TRex and the user is given the option to apply them
to one or more template or reference. Otherwise the user needs to identify the
places where a refactoring is to be applied. In some cases, additional information
needs to be provided, e.g. the desired new name for the Rename refactoring. In
any case, all further steps are then performed automatically. This significantly
reduces the risk of changing the behaviour of a test suite. Automated refactoring
has been successfully applied to source code of implementation languages, e.g.
using the Java Development Tools of the Eclipse platform [21].

Transformed
Subtree of the Pretty Printer
Syntax Tree
(" Refactored
T'(I':%lr\é% ﬁe’z\grl;; Syntax Tree /) Refactoring Change TTCN-3
Notati Ml Symbol Table Processor Weaver Core
otation Parsing Notation

=

o
~
) User Resource Text Language
el PRl Clnterface) G/IanagemerD C Editor) Toolkit
J

Fig. 1. A Simplified View of Our TTCN-3 Refactoring Tool

(S

The TRex tool analyses data flow and inspects declarations, references, and
scopes of TTCN-3 language constructs. As shown in Figure 1, TRex is imple-
mented as a plug-in for the Eclipse platform which provides infrastructure for
user interfaces, handling of workspace resources, text editing, and a language
toolkit for basic language independent support of semantic preserving workspace
transformations. For building up the syntax tree for a test suite we use ‘A Nother
Tool for Language Recognition’ (ANTLR) [22], a parser generator which supports
lexing, parsing, and syntax tree creation and traversal. The actual refactoring is
performed on the basis of the syntax tree?, the symbol table, and the TTCN-3
core notation. A refactoring processor calculates the changes necessary for trans-
forming the source code. This can be done directly on the source code based on

4 An alternative approach would be to build up a TTCN-3 meta model [23] represen-
tation of a TTCN-3 test suite and to use this representation instead of the syntax
tree.

the information obtained from the syntax tree and the symbol table, otherwise
an intermediate subtree transformation step is necessary. In this step, one or
more syntax subtrees are transformed and the corresponding core notation is
obtained by a TTCN-3 pretty printer. These changes are weaved into the origi-
nal TTCN-3 core notation using a programmatic text editor (which is provided
by the Eclipse platform). The original formatting is therefore mostly preserved.

The Metrics are built up, based on the list in Section 4.1, by traversing the
syntax tree and counting the number of basic elements and their references,
whilst also processing each communication statement to generate the Template
Coupling score. During this traversal we also apply the rules for detecting suit-
able areas for refactorisation to every template. From this we generate a table
for the ‘Problems’ view of TRex, listing each detection as a warning, with one
or more appropriate refactorings supplied as ‘Quick Fix’ options for the user to
apply automatically.

5 Summary and Outlook

We presented a catalogue of 49 refactorings which can be used to restructure ex-
isting TTCN-3 test suites without changing their observable behaviour. The aim
of our refactorings is to improve readability, extensibility, modularity, reusability,
complexity, maintainability, and efficiency of test suites. Each of our refactor-
ings provides detailed step-by-step instructions on how to perform the actual
transformations and is accompanied by TTCN-3 examples which illustrate their
application. In this paper, we gave an overview of our TTCN-3 refactoring cat-
alogue and presented some examples from the full version [16]. Furthermore, we
outlined an initial set of metrics to assess the quality of test suites and described
how they can be used to automate the refactoring process.

We implemented the TRex tool, which calculates metrics, makes suggestions
for applying refactorings, and automatically performs the specific steps of a
refactoring. TRex is already proving to be a very useful environment for the
editing, assessment, and restructuring of TTCN-3 test suites.

Currently we are working on a case study to obtain boundary values for our
metrics and to demonstrate the benefits of our refactorings on a large scale.
Future research aims at extending our metrics and rules of when to apply which
refactoring. Furthermore, we will study pattern-based code smells in addition
to our metrics-based approach. We also plan to implement tool support for the
validation of manual refactoring by providing a TTCN-3 bisimulation tool which
allows the equivalence of TTCN-3 test suites to be checked. Finally, we intend
to release TRex as open source software. TRex will be publicly available at
http://www.trex.informatik.uni-goettingen.de.

References

1. Baker, P., Loh, S., Weil, F.: Model-Driven Engineering in a Large Industrial Con-
text — Motorola Case Study. In Briand, L.C., Williams, C., eds.: MoDELS. Volume
3713 of Lecture Notes in Computer Science (LNCS)., Springer (2005) 476-491

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.
21.

. Parr, T.: ANTLR parser generator. http://www.antlr.org (2006)
23.

. ETSI: European Standard (ES) 201 873-1 V3.1.1 (2005-06): The Testing and Test

Control Notation version 3; Part 1: TTCN-3 Core Language. European Telecom-
munications Standards Institute (ETSI), Sophia-Antipolis, France (2005)
Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A., Willcock, C.:
An Introduction into the Testing and Test Control Notation (TTCN-3). Computer
Networks 42(3) (2003)

Mens, T., Tourwe, T.: A Survey of Software Refactoring. IEEE Transactions on
Software Engineering 30(2) (2004) 126-139

Fowler, M.: Refactoring — Improving the Design of Existing Code. Addison-Wesley
1999

%’arna?s, D.L.: Software Aging. In: Proceedings of the 16th International Conference

on Software Engineering (ICSE), May 16-21, 1994, Sorrento, Italy., IEEE Computer
Society/ACM Press (1994) 279-287

Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, University

of Illinois at Urbana-Champaign, USA (1992)

Beck, K.: Extreme Programming Explained. Addison Wesley (2000)

Gamma, E., Beck, K.: JUnit. http://junit.sourceforge.net/ (2006)

. v. Deursen, A., Moonen, L., v. d. Bergh, A., Kok, G.: Refactoring Test Code. In

Marchesi, M., Succi, G., eds.: Proceedings of the 2nd International Conference on
Extreme Programming and Flexible Processes in Software Engineering. (2001)
ETSI: Technical Report (TR) 101 666 (1999-05): Information technology — Open
Systems Interconnection Conformance testing methodology and framework; The
Tree and Tabular Combined Notation (TTCN) (Ed. 24++). European Telecommu-
nications Standards Institute (ETSI), Sophia-Antipolis, France (1999)

Schmitt, M.: Automatic Test Generation Based on Formal Specifications — Practi-
cal Procedures for Efficient State Space Exploration and Improved Representation
of Test Cases. PhD thesis, University of Gottingen, Germany (2003)
Wu-Hen-Chang, A., Viet, D.L., Batori, G., Gecse, R., Csopaki, G.: High-Level
Restructuring of TTCN-3 Test Data. In Grabowski, J., Nielsen, B., eds.: Formal
Approaches to Software Testing: 4th International Workshop, FATES 2004, Linz,
Austria, September 21, 2004, Revised Selected Papers. Volume 3395 of Lecture
Notes in Computer Science (LNCS)., Springer (2005) 180-194

Deif}, T.: Refactoring and Converting a TTCN-2 Test Suite. Presentation at the
TTCN-3 User Conference 2005, June 6-8, 2005, Sophia-Antipolis, France (2005)
Milner, R.: A Calculus of Communicating Systems. Volume 92 of Lecture Notes
in Computer Science (LNCS). Springer (1980)

Zeiss, B.: A Refactoring Tool for TTCN-3. Master’s thesis, Institute for Informat-
ics, University of Gottingen, Germany, ZFI-BM-2006-05 (2006)

Brown, W.J., Malveau, R.C., McCormick, H.: Anti-Patterns. Wiley (1998)
Halstead, M.H.: Elements of Software Science. Elsevier, New York (1977)
McCabe, T.: A Complexity Measure. IEEE Transactions of Software Engineering
2(4) (1976) 308-320

Chidamber, S.R., Kemerer, C.: A Metric Suite for Object-Oriented Design. IEEE
Transactions of Software Engineering 20(6) (1994) 476-493

Eclipse Foundation: Eclipse. http://www.eclipse.org (2006)

Schieferdecker, I., Din, G.: A Meta-model for TTCN-3. In Nufiez, M., Maamar,
Z., Pelayo, F.L., Pousttchi, K., Rubio, F., eds.: Applying Formal Methods: Test-
ing, Performance and M/ECommerce, FORTE 2004 Workshops, Toledo, Spain,
October 1-2, 2004. Volume 3236 of Lecture Notes in Computer Science (LNCS).,
Springer (2004) 366-379

